Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 175(6): e14092, 2023.
Article in English | MEDLINE | ID: mdl-38148187

ABSTRACT

Salt stress is an alarming abiotic stress that reduces mustard growth and yield. To attenuate salt toxicity effects, plant growth-promoting rhizobacteria (PGPR) offers a sustainable approach. Among the various PGPR, Pseudomonas fluorescens (P. fluorescens NAIMCC-B-00340) was chosen for its salt tolerance (at 100 mM NaCl) and for exhibiting various growth-promoting activities. Notably, P. fluorescens can produce auxin, which plays a role in melatonin (MT) synthesis. Melatonin is a pleiotropic molecule that acts as an antioxidant to scavenge reactive oxygen species (ROS), resulting in stress reduction. Owing to the individual role of PGPR and MT in salt tolerance, and their casual nexus, their domino effect was investigated in Indian mustard under salt stress. The synergistic action of P. fluorescens and MT under salt stress conditions was found to enhance the activity of antioxidative enzymes and proline content as well as  promote the production of secondary metabolites. This led to reduced oxidative stress following effective ROS scavenging, maintained photosynthesis, and improved growth. In mustard plants treated with MT and P. fluorescens under salt stress, eight flavonoids showed significant increase. Kaempferol and cyanidin showed the highest concentrations and are reported to act as antioxidants with protective functions under stress. Thus, we can anticipate that strategies involved in their enhancement could provide a better adaptive solution to salt toxicity in mustard plants. In conclusion, the combination of P. fluorescens and MT affected antioxidant metabolism and flavonoid profile that could be used to mitigate salt-induced stress and bolster plant resilience.


Subject(s)
Melatonin , Pseudomonas fluorescens , Antioxidants/metabolism , Melatonin/pharmacology , Mustard Plant/metabolism , Pseudomonas fluorescens/metabolism , Reactive Oxygen Species/metabolism , Flavonoids/metabolism
2.
Plants (Basel) ; 12(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36840054

ABSTRACT

The severity of salt stress is alarming for crop growth and production and it threatens food security. Strategies employed for the reduction in stress are not always eco-friendly or sustainable. Plant-growth-promoting rhizobacteria (PGPR) could provide an alternative sustainable stress reduction strategy owning to its role in various metabolic processes. In this study, we have used two strains of PGPR, Pseudomonas fluorescens (NAIMCC-B-00340) and Azotobacter chroococcum Beijerinck 1901 (MCC 2351), either singly or in combination, and studied their effect in the amelioration of salt toxicity in mustard cultivar Pusa Jagannath via its influence on plants' antioxidants' metabolism, photosynthesis and growth. Individually, the impact of Pseudomonas fluorescens was better in reducing stress ethylene, oxidative stress, photosynthesis and growth but maximal alleviation was observed with their combined application. MDA and H2O2 content as indicator of oxidative stress decreased by 27.86% and 45.18% and osmolytes content (proline and glycine-betaine) increased by 38.8% and 26.3%, respectively, while antioxidative enzymes (SOD, CAT, APX and GR) increased by 58.40, 25.65, 81.081 and 55.914%, respectively, over salt-treated plants through the application of Pseudomonas fluorescens. The combined application maximally resulted in more cell viability and less damage to the leaf with lesser superoxide generation due to higher antioxidative enzymes and reduced glutathione formation (GSH). Considering the obtained results, we can supplement the PGPR in combination to plants subjected to salt stress, prevent photosynthetic and growth reduction, and increase the yield of plants.

3.
Front Plant Sci ; 13: 866409, 2022.
Article in English | MEDLINE | ID: mdl-35646001

ABSTRACT

Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...