Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37447666

ABSTRACT

The roadside unit (RSU) is one of the fundamental components in a vehicular ad hoc network (VANET), where a vehicle communicates in infrastructure mode. The RSU has multiple functions, including the sharing of emergency messages and the updating of vehicles about the traffic situation. Deploying and managing a static RSU (sRSU) requires considerable capital and operating expenditures (CAPEX and OPEX), leading to RSUs that are sparsely distributed, continuous handovers amongst RSUs, and, more importantly, frequent RSU interruptions. At present, researchers remain focused on multiple parameters in the sRSU to improve the vehicle-to-infrastructure (V2I) communication; however, in this research, the mobile RSU (mRSU), an emerging concept for sixth-generation (6G) edge computing vehicular ad hoc networks (VANETs), is proposed to improve the connectivity and efficiency of communication among V2I. In addition to this, the mRSU can serve as a computing resource for edge computing applications. This paper proposes a novel energy-efficient reservation technique for edge computing in 6G VANETs that provides an energy-efficient, reservation-based, cost-effective solution by introducing the concept of the mRSU. The simulation outcomes demonstrate that the mRSU exhibits superior performance compared to the sRSU in multiple aspects. The mRSU surpasses the sRSU with a packet delivery ratio improvement of 7.7%, a throughput increase of 5.1%, a reduction in end-to-end delay by 4.4%, and a decrease in hop count by 8.7%. The results are generated across diverse propagation models, employing realistic urban scenarios with varying packet sizes and numbers of vehicles. However, it is important to note that the enhanced performance parameters and improved connectivity with more nodes lead to a significant increase in energy consumption by 2%.


Subject(s)
Communication , Mobile Health Units , Humans , Computer Simulation , Physical Phenomena , Research Personnel
2.
Ecotoxicol Environ Saf ; 259: 115013, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37182301

ABSTRACT

Renewable alternatives to fossil diesel (FD) including fatty acid methyl ester (FAME) biodiesel have become more prevalent. However, toxicity of exhaust material from their combustion, relative to the fuels they are displacing has not been fully characterised. This study was carried out to examine particle toxicity within the lung epithelium and the role for polycyclic aromatic hydrocarbons (PAHs). Exhaust particles from a 20% (v/v) blend of FAME biodiesel had little impact on primary airway epithelial toxicity compared to FD derived particles but did result in an altered profile of PAHs, including an increase in particle bound carcinogenic B[a]P. Higher blends of biodiesel had significantly increased levels of more carcinogenic PAHs, which was associated with a higher level of stress response gene expression including CYP1A1, NQO1 and IL1B. Removal of semi-volatile material from particulates abolished effects on airway cells. Particle size difference and toxic metals were discounted as causative for biological effects. Finally, combustion of a single component fuel (Methyl decanoate) containing the methyl ester molecular structure found in FAME mixtures, also produced more carcinogenic PAHs at the higher fuel blend levels. These results indicate the use of FAME biodiesel at higher blends may be associated with an increased particle associated carcinogenic and toxicity risk.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Biofuels/toxicity , Biofuels/analysis , Particulate Matter/analysis , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , Carcinogens , Gasoline/analysis
3.
Opt Express ; 30(15): 26690-26700, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236856

ABSTRACT

In this work, a novel design for the electrodes in a near quasi-single-mode (QSM) vertical-cavity surface-emitting laser (VCSEL) array with Zn-diffusion apertures inside is demonstrated to produce an effective improvement in the high-speed data transmission performance. By separating the electrodes in a compact 2×2 coupled VCSEL array into two parts, one for pure dc current injection and the other for large ac signal modulation, a significant enhancement in the high-speed data transmission performance can be observed. Compared with the single electrode reference, which parallels 4 VCSEL units in the array, the demonstrated array with its separated electrode design exhibits greater dampening of electrical-optical (E-O) frequency response and a larger 3-dB E-O bandwidth (19 vs. 15 GHz) under the same amount of total bias current (20 mA). Moreover, this significant improvement in dynamic performance does not come at the cost of any degradation in the static performance in terms of the maximum near QSM optical output power (17 mW @ 20 mA) and the Gaussian-like optical far-field pattern which has a narrow divergence angle (full-width half maximum (FWHM): 10° at 20 mA). The advantages of the separated electrode design lead to a much better quality of 32 Gbit/sec eye-opening as compared to that of the reference device (jitter: 1.5 vs. 2.8 ps) and error-free 32 Gbit/sec transmissions over a 500 m multi-mode fiber has been achieved under a moderate total bias current of 20 mA.

4.
PeerJ Comput Sci ; 7: e351, 2021.
Article in English | MEDLINE | ID: mdl-33817001

ABSTRACT

The cloud is a shared pool of systems that provides multiple resources through the Internet, users can access a lot of computing power using their computer. However, with the strong migration rate of multiple applications towards the cloud, more disks and servers are required to store huge data. Most of the cloud storage service providers are replicating full copies of data over multiple data centers to ensure data availability. Further, the replication is not only a costly process but also a wastage of energy resources. Furthermore, erasure codes reduce the storage cost by splitting data in n chunks and storing these chunks into n + k different data centers, to tolerate k failures. Moreover, it also needs extra computation cost to regenerate the data object. Cache-A Replica On Modification (CAROM) is a hybrid file system that gets combined benefits from both the replication and erasure codes to reduce access latency and bandwidth consumption. However, in the literature, no formal analysis of CAROM is available which can validate its performance. To address this issue, this research firstly presents a colored Petri net based formal model of CAROM. The research proceeds by presenting a formal analysis and simulation to validate the performance of the proposed system. This paper contributes towards the utilization of resources in clouds by presenting a comprehensive formal analysis of CAROM.

5.
Micromachines (Basel) ; 12(3)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800483

ABSTRACT

Quartz Tuning Fork (QTF) based sensors are used for Scanning Probe Microscopes (SPM), in particular for near-field scanning optical microscopy. Highly sharp Tungsten (W) tips with larger cone angles and less tip diameter are critical for SPM instead of platinum and iridium (Pt/Ir) tips due to their high-quality factor, conductivity, mechanical stability, durability and production at low cost. Tungsten is chosen for its ease of electrochemical etching, yielding high-aspect ratio, sharp tips with tens of nanometer end diameters, while using simple etching circuits and basic electrolyte chemistry. Moreover, the resolution of the SPM images is observed to be associated with the cone angle of the SPM tip, therefore Atomic-Resolution Imaging is obtained with greater cone angles. Here, the goal is to chemically etch W to the smallest possible tip apex diameters. Tips with greater cone angles are produced by the custom etching procedures, which have proved superior in producing high quality tips. Though various methods are developed for the electrochemical etching of W wire, with a range of applications from scanning tunneling microscopy (SPM) to electron sources of scanning electron microscopes, but the basic chemical etching methods need to be optimized for reproducibility, controlling cone angle and tip sharpness that causes problems for the end users. In this research work, comprehensive experiments are carried out for the production of tips from 0.4 mm tungsten wire by three different electrochemical etching techniques, that is, Alternating Current (AC) etching, Meniscus etching and Direct Current (DC) etching. Consequently, sharp and high cone angle tips are obtained with required properties where the results of the W etching are analyzed, with optical microscope, and then with field emission scanning electron microscopy (FE-SEM). Similarly, effects of varying applied voltages and concentration of NaOH solution with comparison among the produced tips are investigated by measuring their cone angle and tip diameter. Moreover, oxidation and impurities, that is, removal of contamination and etching parameters are also studied in this research work. A method has been tested to minimize the oxidation on the surface and the tips were characterized with scanning electron microscope (SEM).

6.
Opt Lett ; 45(17): 4839-4842, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32870871

ABSTRACT

In this work, we demonstrate a novel high-power vertical-cavity surface-emitting laser (VCSEL) array with highly single-mode (SM) and single-polarized output performance without significantly increasing the intra-cavity loss and threshold current (Ith). By combining a low-loss zinc-diffusion aperture with an electroplated copper substrate, we can obtain a highly SM output (side mode suppression ratio >50dB) with a very narrow divergence angle (1/e2:∼10∘) under high output power (3.1 W; 1% duty cycle) and sustain a single polarization state, with a polarization suppression ratio of around 9 dB, under the full range of bias currents. Compared to the reference device without the copper substrate, the demonstrated array can not only switch the output optical spectra from quasi-SM to highly SM but also maintain a close threshold current value (Ith: 0.8 versus 0.7 mA per unit device) and slope efficiency. The enhancement in fundamental mode selectivity of our VCSEL structure can be attributed to the single-polarized lasing mode induced by tensile strain, which is caused by the electroplated copper substrate, as verified by the double-crystal x-ray measurement results.

SELECTION OF CITATIONS
SEARCH DETAIL
...