Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Multimed Tools Appl ; : 1-31, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-37362744

ABSTRACT

There is a broad range of novel Coronaviruses (CoV) such as the common cold, cough, and severe lung infections. The mutation of this virus, which originally started as COVID-19 in Wuhan, China, has continued the rapid spread globally. As the mutated form of this virus spreads across the world, testing and screening procedures of patients have become tedious for healthcare departments in largely populated countries such as India. To diagnose COVID-19 pneumonia by radiological methods, high-resolution computed tomography (CT) of the chest has been considered the most precise method of examination. The use of modern artificial intelligence (AI) techniques on chest high-resolution computed tomography (HRCT) images can help to detect the disease, especially in remote areas with a lack of specialized physicians. This article presents a novel metaheuristic algorithm for automatic COVID-19 detection using a least square support vector machine (LSSVM) classifier for three classes namely normal, COVID, and pneumonia. The proposed model results in a classification accuracy of 87.2% and an F1-score of 86.3% for multiclass classifications from simulations. The analysis of information transfer rate (ITR) revealed that the modified quantum-based marine predators algorithm (Mq-MPA) feature selection algorithm reduces the classification time of LSSVM by 23% when compared to the deep learning models.

2.
J Biomed Res ; 34(3): 191-204, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-32561699

ABSTRACT

The detection of seizure onset and events using electroencephalogram (EEG) signals are important tasks in epilepsy research. The literature available on seizure detection has discussed the implementation of advanced signal processing algorithms using tools accessed over the cloud. However, seizure monitoring application needs near sensor processing due to privacy and latency issues. In this paper, a real time seizure detection system has been implemented using an embedded system. The proposed system is based on ensemble empirical mode decomposition (EEMD) and tunable-Q wavelet transform (TQWT) algorithms. The analysis and classification of non-stationary EEG signals require the wavelet transform with high Q-factor. However, direct use of TQWT increases the computational complexity of feature extraction from multivariate EEG signals. In this paper, the first step is to process the signal by using EEMD to obtain 8 intrinsic mode functions (IMFs). The Kraskov (KraEn), sample (SampEn), and permutation (PermEn) entropy features of IMFs are extracted and based on optimum values, and 4 IMFs are decomposed using TQWT. Secondly, centered correntropy (CenCorrEn) features of the 1 st and 16 th sub-band of TQWT have been used as classifier inputs. The performance of multilayer perceptron neural networks (MLPNN), least squares support vector machine (LSSVM), and random forest (RF) classifiers has been tested on the multichannel EEG data recorded from a local hospital. The RF classifier has produced the highest accuracy of 96.2% in classifying the signals. The proposed scheme has been employed in developing an embedded seizure detection system to assist neurologists in making seizure diagnostic decisions.

SELECTION OF CITATIONS
SEARCH DETAIL
...