Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915704

ABSTRACT

Methodological advances in neuroscience have enabled the collection of massive datasets which demand innovative approaches for scientific communication. Existing platforms for data storage lack intuitive tools for data exploration, limiting our ability to interact effectively with these brain-wide datasets. We introduce two public websites: (Data and Atlas) developed for the International Brain Laboratory which provide access to millions of behavioral trials and hundreds of thousands of individual neurons. These interfaces allow users to discover both the raw and processed brain-wide data released by the IBL at the scale of the whole brain, individual sessions, trials, and neurons. By hosting these data interfaces as websites they are available cross-platform with no installation. By releasing each site's code as a modular open-source framework, other researchers can easily develop their own web interfaces and explore their own data. As neuroscience datasets continue to expand, customizable web interfaces offer a glimpse into a future of streamlined data exploration and act as blueprints for future tools.

2.
Nat Methods ; 21(7): 1316-1328, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38918605

ABSTRACT

Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce 'Lightning Pose', an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We released a cloud application that allows users to label data, train networks and process new videos directly from the browser.


Subject(s)
Algorithms , Bayes Theorem , Video Recording , Animals , Video Recording/methods , Supervised Machine Learning , Cloud Computing , Software , Posture/physiology , Deep Learning , Image Processing, Computer-Assisted/methods , Behavior, Animal
3.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38187681

ABSTRACT

Understanding how brain activity is related to animal behavior requires measuring multi-area interactions on multiple timescales. However, methods to perform chronic, simultaneous recordings of neural activity from many brain areas are lacking. Here, we introduce a novel approach for independent chronic probe implantation that enables flexible, simultaneous interrogation of neural activity from many brain regions during head restrained or freely moving behavior. The approach, that we called indie (independent dovetail implants for electrophysiology), enables repeated retrieval and reimplantation of probes. The chronic implantation approach can be combined with other modalities such as skull clearing for cortex wide access and optogenetics with optic fibers. Using this approach, we implanted 6 probes chronically in one hemisphere of the mouse brain. The implant is lightweight, allows flexible targeting with different angles, and offers enhanced stability. Our approach broadens the applications of chronic recording while retaining its main advantages over acute recordings (superior stability, longitudinal monitoring of activity and freely moving interrogations) and provides an appealing venue to study processes not accessible by acute methods, such as the neural substrate of learning across multiple areas.

4.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-37162966

ABSTRACT

Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce "Lightning Pose," an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry, and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post-hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We release a cloud application that allows users to label data, train networks, and predict new videos directly from the browser.

6.
Nat Protoc ; 16(7): 3241-3263, 2021 07.
Article in English | MEDLINE | ID: mdl-34075229

ABSTRACT

Measurements of neuronal activity across brain areas are important for understanding the neural correlates of cognitive and motor processes such as attention, decision-making and action selection. However, techniques that allow cellular resolution measurements are expensive and require a high degree of technical expertise, which limits their broad use. Wide-field imaging of genetically encoded indicators is a high-throughput, cost-effective and flexible approach to measure activity of specific cell populations with high temporal resolution and a cortex-wide field of view. Here we outline our protocol for assembling a wide-field macroscope setup, performing surgery to prepare the intact skull and imaging neural activity chronically in behaving, transgenic mice. Further, we highlight a processing pipeline that leverages novel, cloud-based methods to analyze large-scale imaging datasets. The protocol targets laboratories that are seeking to build macroscopes, optimize surgical procedures for long-term chronic imaging and/or analyze cortex-wide neuronal recordings. The entire protocol, including steps for assembly and calibration of the macroscope, surgical preparation, imaging and data analysis, requires a total of 8 h. It is designed to be accessible to laboratories with limited expertise in imaging methods or interest in high-throughput imaging during behavior.


Subject(s)
Behavior, Animal/physiology , Cerebral Cortex/cytology , Cerebral Cortex/diagnostic imaging , Imaging, Three-Dimensional/methods , Animals , Artifacts , Hemodynamics/physiology , Mice, Transgenic , Skull/surgery
7.
Elife ; 102021 05 20.
Article in English | MEDLINE | ID: mdl-34011433

ABSTRACT

Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here, we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We adopted a task for head-fixed mice that assays perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path toward achieving reproducibility in neuroscience through collaborative open-science approaches.


In science, it is of vital importance that multiple studies corroborate the same result. Researchers therefore need to know all the details of previous experiments in order to implement the procedures as exactly as possible. However, this is becoming a major problem in neuroscience, as animal studies of behavior have proven to be hard to reproduce, and most experiments are never replicated by other laboratories. Mice are increasingly being used to study the neural mechanisms of decision making, taking advantage of the genetic, imaging and physiological tools that are available for mouse brains. Yet, the lack of standardized behavioral assays is leading to inconsistent results between laboratories. This makes it challenging to carry out large-scale collaborations which have led to massive breakthroughs in other fields such as physics and genetics. To help make these studies more reproducible, the International Brain Laboratory (a collaborative research group) et al. developed a standardized approach for investigating decision making in mice that incorporates every step of the process; from the training protocol to the software used to analyze the data. In the experiment, mice were shown images with different contrast and had to indicate, using a steering wheel, whether it appeared on their right or left. The mice then received a drop of sugar water for every correction decision. When the image contrast was high, mice could rely on their vision. However, when the image contrast was very low or zero, they needed to consider the information of previous trials and choose the side that had recently appeared more frequently. This method was used to train 140 mice in seven laboratories from three different countries. The results showed that learning speed was different across mice and laboratories, but once training was complete the mice behaved consistently, relying on visual stimuli or experiences to guide their choices in a similar way. These results show that complex behaviors in mice can be reproduced across multiple laboratories, providing an unprecedented dataset and open-access tools for studying decision making. This work could serve as a foundation for other groups, paving the way to a more collaborative approach in the field of neuroscience that could help to tackle complex research challenges.


Subject(s)
Behavior, Animal , Biomedical Research/standards , Decision Making , Neurosciences/standards , Animals , Cues , Female , Learning , Male , Mice, Inbred C57BL , Models, Animal , Observer Variation , Photic Stimulation , Reproducibility of Results , Time Factors , Visual Perception
8.
Elife ; 102021 01 11.
Article in English | MEDLINE | ID: mdl-33427198

ABSTRACT

Perceptual decision-makers often display a constant rate of errors independent of evidence strength. These 'lapses' are treated as a nuisance arising from noise tangential to the decision, e.g. inattention or motor errors. Here, we use a multisensory decision task in rats to demonstrate that these explanations cannot account for lapses' stimulus dependence. We propose a novel explanation: lapses reflect a strategic trade-off between exploiting known rewarding actions and exploring uncertain ones. We tested this model's predictions by selectively manipulating one action's reward magnitude or probability. As uniquely predicted by this model, changes were restricted to lapses associated with that action. Finally, we show that lapses are a powerful tool for assigning decision-related computations to neural structures based on disruption experiments (here, posterior striatum and secondary motor cortex). These results suggest that lapses reflect an integral component of decision-making and are informative about action values in normal and disrupted brain states.


Subject(s)
Cognition , Decision Making , Rats/psychology , Reward , Uncertainty , Animals , Female , Male , Models, Psychological , Perception , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...