Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Respir J ; 58(5)2021 11.
Article in English | MEDLINE | ID: mdl-33958427

ABSTRACT

BACKGROUND: Acute pulmonary exacerbations (AE) are episodes of clinical worsening in cystic fibrosis (CF), often precipitated by infection. Timely detection is critical to minimise morbidity and lung function declines associated with acute inflammation during AE. Based on our previous observations that airway protein short palate lung nasal epithelium clone 1 (SPLUNC1) is regulated by inflammatory signals, we investigated the use of SPLUNC1 fluctuations to diagnose and predict AE in CF. METHODS: We enrolled CF participants from two independent cohorts to measure AE markers of inflammation in sputum and recorded clinical outcomes for a 1-year follow-up period. RESULTS: SPLUNC1 levels were high in healthy controls (n=9, 10.7 µg·mL-1), and significantly decreased in CF participants without AE (n=30, 5.7 µg·mL-1; p=0.016). SPLUNC1 levels were 71.9% lower during AE (n=14, 1.6 µg·mL-1; p=0.0034) regardless of age, sex, CF-causing mutation or microbiology findings. Cytokines interleukin-1ß and tumour necrosis factor-α were also increased in AE, whereas lung function did not decrease consistently. Stable CF participants with lower SPLUNC1 levels were much more likely to have an AE at 60 days (hazard ratio (HR)±se 11.49±0.83; p=0.0033). Low-SPLUNC1 stable participants remained at higher AE risk even 1 year after sputum collection (HR±se 3.21±0.47; p=0.0125). SPLUNC1 was downregulated by inflammatory cytokines and proteases increased in sputum during AE. CONCLUSION: In acute CF care, low SPLUNC1 levels could support a decision to increase airway clearance or to initiate pharmacological interventions. In asymptomatic, stable patients, low SPLUNC1 levels could inform changes in clinical management to improve long-term disease control and clinical outcomes in CF.


Subject(s)
Cystic Fibrosis , Glycoproteins , Humans , Lung , Nasal Mucosa , Phosphoproteins
2.
Nat Commun ; 12(1): 1399, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658521

ABSTRACT

Staphylococcus aureus is a prominent human pathogen that readily adapts to host immune defenses. Here, we show that, in contrast to Gram-negative pathogens, S. aureus induces a distinct airway immunometabolic response dominated by the release of the electrophilic metabolite, itaconate. The itaconate synthetic enzyme, IRG1, is activated by host mitochondrial stress, which is induced by staphylococcal glycolysis. Itaconate inhibits S. aureus glycolysis and selects for strains that re-direct carbon flux to fuel extracellular polysaccharide (EPS) synthesis and biofilm formation. Itaconate-adapted strains, as illustrated by S. aureus isolates from chronic airway infection, exhibit decreased glycolytic activity, high EPS production, and proficient biofilm formation even before itaconate stimulation. S. aureus thus adapts to the itaconate-dominated immunometabolic response by producing biofilms, which are associated with chronic infection of the human airway.


Subject(s)
Host-Pathogen Interactions/physiology , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , Staphylococcus aureus/pathogenicity , Succinates/metabolism , Adult , Animals , Biofilms/growth & development , Bronchoalveolar Lavage Fluid , Carbohydrate Metabolism , Cystic Fibrosis/microbiology , Gene Expression Regulation, Bacterial , Glycolysis/drug effects , Glycolysis/physiology , Host-Pathogen Interactions/immunology , Humans , Hydro-Lyases/metabolism , Mice, Inbred C57BL , Pseudomonas Infections/immunology , Pseudomonas Infections/metabolism , Reactive Oxygen Species/metabolism , Sputum/microbiology , Staphylococcal Infections/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Stress, Physiological , Succinates/pharmacology , Succinic Acid/metabolism , Young Adult
3.
Am J Respir Crit Care Med ; 202(10): 1419-1429, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32603604

ABSTRACT

Rationale: Cystic fibrosis (CF) is a life-shortening, multisystem hereditary disease caused by abnormal chloride transport. CF lung disease is driven by innate immune dysfunction and exaggerated inflammatory responses that contribute to tissue injury. To define the transcriptional profile of this airway immune dysfunction, we performed the first single-cell transcriptome characterization of CF sputum.Objectives: To define the transcriptional profile of sputum cells and its implication in the pathogenesis of immune function and the development of CF lung disease.Methods: We performed single-cell RNA sequencing of sputum cells from nine subjects with CF and five healthy control subjects. We applied novel computational approaches to define expression-based cell function and maturity profiles, herein called transcriptional archetypes.Measurements and Main Results: The airway immune cell repertoire shifted from alveolar macrophages in healthy control subjects to a predominance of recruited monocytes and neutrophils in CF. Recruited lung mononuclear phagocytes were abundant in CF and were separated into the following three archetypes: activated monocytes, monocyte-derived macrophages, and heat shock-activated monocytes. Neutrophils were the most prevalent in CF, with a dominant immature proinflammatory archetype. Although CF monocytes exhibited proinflammatory features, both monocytes and neutrophils showed transcriptional evidence of abnormal phagocytic and cell-survival programs.Conclusions: Our findings offer an opportunity to understand subject-specific immune dysfunction and its contribution to divergent clinical courses in CF. As we progress toward personalized applications of therapeutic and genomic developments, we hope this inflammation-profiling approach will enable further discoveries that change the natural history of CF lung disease.


Subject(s)
Airway Resistance/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/physiopathology , Inflammation/genetics , Inflammation/physiopathology , Transcriptional Activation/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Single-Cell Analysis
4.
Sci Transl Med ; 11(499)2019 07 03.
Article in English | MEDLINE | ID: mdl-31270271

ABSTRACT

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor best known for regulating cell proliferation and metabolism. PTEN forms a complex with the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) at the plasma membrane, and this complex is known to be functionally impaired in CF. Here, we demonstrated that the combined effect of PTEN and CFTR dysfunction stimulates mitochondrial activity, resulting in excessive release of succinate and reactive oxygen species. This environment promoted the colonization of the airway by Pseudomonas aeruginosa, bacteria that preferentially metabolize succinate, and stimulated an anti-inflammatory host response dominated by immune-responsive gene 1 (IRG1) and itaconate. The recruitment of myeloid cells induced by these strains was inefficient in clearing the infection and increased numbers of phagocytes accumulated under CFTR-PTEN axis dysfunction. This central metabolic defect in mitochondrial function due to impaired PTEN activity contributes to P. aeruginosa infection in CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Lung/microbiology , Mitochondria/metabolism , PTEN Phosphohydrolase/metabolism , Pseudomonas Infections/metabolism , Animals , Carboxy-Lyases/metabolism , Colony Count, Microbial , Cystic Fibrosis/pathology , HCT116 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunity , Interleukin-1beta/metabolism , Lung/immunology , Mice, Inbred C57BL , Middle Aged , Oxidants/metabolism , Oxidative Stress , PTEN Phosphohydrolase/deficiency , Pseudomonas aeruginosa/isolation & purification , Reactive Oxygen Species/metabolism , Succinates/metabolism
5.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L321-L333, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30461288

ABSTRACT

Bpifa1 (BPI fold-containing group A member 1) is an airway host-protective protein with immunomodulatory properties that binds to LPS and is regulated by infectious and inflammatory signals. Differential expression of Bpifa1 has been widely reported in lung disease, yet the biological significance of this observation is unclear. We sought to understand the role of Bpifa1 fluctuations in modulating lung inflammation. We treated wild-type (WT) and Bpifa1-/- mice with intranasal LPS and performed immunological and transcriptomic analyses of lung tissue to determine the immune effects of Bpifa1 deficiency. We show that neutrophil (polymorphonuclear cells, PMNs) lung recruitment and transmigration to the airways in response to LPS is impaired in Bpifa1-/- mice. Transcriptomic analysis revealed a signature of 379 genes that differentiated Bpifa1-/- from WT mice. During acute lung inflammation, the most downregulated genes in Bpifa1-/- mice were Cxcl9 and Cxcl10. Bpifa1-/- mice had lower bronchoalveolar lavage concentrations of C-X-C motif chemokine ligand 10 (Cxcl10) and Cxcl9, interferon-inducible PMN chemokines. This was consistent with lower expression of IFNγ, IFNλ, downstream IFN-stimulated genes, and IFN-regulatory factors, which are important for the innate immune response. Administration of Cxcl10 before LPS treatment restored the inflammatory response in Bpifa1-/- mice. Our results identify a novel role for Bpifa1 in the regulation of Cxcl10-mediated PMN recruitment to the lungs via IFNγ and -λ signaling during acute inflammation.


Subject(s)
Glycoproteins/drug effects , Glycoproteins/genetics , Inflammation/drug therapy , Neutrophil Infiltration/drug effects , Phosphoproteins/drug effects , Phosphoproteins/genetics , Acute Disease , Animals , Lipopolysaccharides/pharmacology , Lung/drug effects , Mice, Inbred C57BL , Neutrophil Infiltration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...