Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 116(51): 25484-25490, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31772024

ABSTRACT

A mechanistic understanding of adhesion in soft materials is critical in the fields of transportation (tires, gaskets, and seals), biomaterials, microcontact printing, and soft robotics. Measurements have long demonstrated that the apparent work of adhesion coming into contact is consistently lower than the intrinsic work of adhesion for the materials, and that there is adhesion hysteresis during separation, commonly explained by viscoelastic dissipation. Still lacking is a quantitative experimentally validated link between adhesion and measured topography. Here, we used in situ measurements of contact size to investigate the adhesion behavior of soft elastic polydimethylsiloxane hemispheres (modulus ranging from 0.7 to 10 MPa) on 4 different polycrystalline diamond substrates with topography characterized across 8 orders of magnitude, including down to the angstrom scale. The results show that the reduction in apparent work of adhesion is equal to the energy required to achieve conformal contact. Further, the energy loss during contact and removal is equal to the product of the intrinsic work of adhesion and the true contact area. These findings provide a simple mechanism to quantitatively link the widely observed adhesion hysteresis to roughness rather than viscoelastic dissipation.

2.
Nanotechnology ; 30(4): 045705, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-30479311

ABSTRACT

Conductive modes of atomic force microscopy are widely used to characterize the electronic properties of materials, and in such measurements, contact size is typically determined from current flow. Conversely, in nanodevice applications, the current flow is predicted from the estimated contact size. In both cases, it is very common to relate the contact size and current flow using well-established ballistic electron transport theory. Here we performed 19 electromechanical tests of platinum nanocontacts with in situ transmission electron microscopy to measure contact size and conductance. We also used molecular dynamics simulations of matched nanocontacts to investigate the nature of contact on the atomic scale. Together, these tests show that the ballistic transport equations under-predict the contact size by more than an order of magnitude. The measurements suggest that the low conductance of the contact cannot be explained by the scattering of electrons at defects nor by patchy contact due to surface roughness; instead, the lower-than-expected contact conductance is attributed to approximately a monolayer of insulating surface species on the platinum. Surprisingly, the low conductance persists throughout loading and even after significant sliding of the contact in vacuum. We apply tunneling theory and extract best-fit barrier parameters that describe the properties of this surface layer. The implications of this investigation are that electron transport in device-relevant platinum nanocontacts can be significantly limited by the presence and persistence of surface species, resulting in current flow that is better described by tunneling theory than ballistic electron transport, even for cleaned pure-platinum surfaces and even after loading and sliding in vacuum.

3.
Nanotechnology ; 30(3): 035704, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30444727

ABSTRACT

Metal nanocontacts play a critical role in atomic force microscopy, functional nanostructures, metallic nanoparticles, and nanoscale electromechanical devices. In all cases, knowledge of the area of contact, and its variation with load, is critical for the quantitative prediction of behavior. Often, the contact area is predicted using continuum mechanics models which relate contact size to geometry, material properties, and load. Here we show for platinum nanoprobes that the contact size deviates significantly from these continuum predictions, even at low applied loads and in the absence of irreversible shape change. We use in situ transmission electron microscopy (TEM) with matched molecular dynamics (MD) simulations to investigate the load-dependent size of the contact. Direct measurements of contact radius from MD and TEM exceed the predictions of continuum mechanics by 24%-164%, depending on the model applied. The physical mechanism for this deviation is found to be dislocation activity in the near-surface material, which is fully reversed upon unloading. These findings demonstrate that contact mechanics models are insufficient for predicting contact area in real-world platinum nanostructures, even at ultra-low applied loads.

4.
Rev Sci Instrum ; 89(11): 113708, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501349

ABSTRACT

Sliding wear is particularly problematic for micro- and nano-scale devices and applications, and is often studied at the small scale to develop practical and fundamental insights. While many methods exist to measure and quantify the wear of a sliding atomic force microscope (AFM) probe, many of these rely on specialized equipment and/or assumptions from continuum mechanics. Here we present a methodology that enables simple, purely AFM-based measurement of wear, in cases where the AFM probe wears to a flat plateau. The rate of volume removal is recast into a form that depends primarily on the time-varying contact area. This contact area is determined using images of sharp spikes, which are analyzed with a simple thresholding technique, rather than requiring sophisticated computer algorithms or continuum mechanics assumptions. This approach enables the rapid determination of volume lost, rate of material removal, normal stress, and interfacial shear stress at various points throughout the wear experiment. The method is demonstrated using silicon probes sliding on an aluminum oxide substrate. As a validation for the present method, direct imaging in the transmission electron microscope is used to verify the method's parameters and results. Overall, it is envisioned that this purely AFM-based methodology will enable higher-throughput wear experiments and direct hypothesis-based investigation into the science of wear and its dependence on different variables.

5.
ACS Appl Mater Interfaces ; 10(34): 29169-29178, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30052425

ABSTRACT

Surface roughness affects the functional properties of surfaces, including adhesion, friction, hydrophobicity, biological response, and electrical and thermal transport properties. However, experimental investigations to quantify these links are often inconclusive because surfaces are fractal-like, and the values of measured roughness parameters depend on measurement size. Here, we demonstrate the characterization of topography of an ultrananocrystalline diamond (UNCD) surface at the angstrom scale using transmission electron microscopy (TEM), as well as its combination with conventional techniques to achieve a comprehensive surface description spanning 8 orders of magnitude in size. We performed more than 100 individual measurements of the nanodiamond film using both TEM and conventional techniques (stylus profilometry and atomic force microscopy). While individual measurements of root-mean-square (RMS) height, RMS slope, and RMS curvature vary by orders of magnitude, we combine the various techniques using the power spectral density and use this to compute scale-independent parameters. This analysis reveals that "smooth" UNCD surfaces have an RMS slope greater than 1, even larger than the slope of the Austrian Alps when measured on the scale of a human step. This approach of comprehensive multiscale roughness characterization, measured with angstrom-scale detail, will enable the systematic evaluation and optimization of other technologically relevant surfaces, as well as systematic testing of the many analytical and numerical models for the behavior of rough surfaces.

6.
ACS Nano ; 11(12): 11890-11897, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29083870

ABSTRACT

High-resolution lithography often involves thin resist layers which pose a challenge for pattern characterization. Direct evidence that the pattern was well-defined and can be used for device fabrication is provided if a successful pattern transfer is demonstrated. In the case of thermal scanning probe lithography (t-SPL), highest resolutions are achieved for shallow patterns. In this work, we study the transfer reliability and the achievable resolution as a function of applied temperature and force. Pattern transfer was reliable if a pattern depth of more than 3 nm was reached and the walls between the patterned lines were slightly elevated. Using this geometry as a benchmark, we studied the formation of 10-20 nm half-pitch dense lines as a function of the applied force and temperature. We found that the best pattern geometry is obtained at a heater temperature of ∼600 °C, which is below or close to the transition from mechanical indentation to thermal evaporation. At this temperature, there still is considerable plastic deformation of the resist, which leads to a reduction of the pattern depth at tight pitch and therefore limits the achievable resolution. By optimizing patterning conditions, we achieved 11 nm half-pitch dense lines in the HM8006 transfer layer and 14 nm half-pitch dense lines and L-lines in silicon. For the 14 nm half-pitch lines in silicon, we measured a line edge roughness of 2.6 nm (3σ) and a feature size of the patterned walls of 7 nm.

7.
Nanoscale ; 6(24): 14630-5, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25360574

ABSTRACT

Bimetallic nanoparticles like Cu-Ni are particularly attractive due to their magnetic and catalytic properties; however, their properties depend strongly on the structure of the alloy i.e. mixed, core-shell or Janus. To predict the alloy structure, this paper investigates the size and shape effects as well as the surface segregation effect on the Cu-Ni phase diagram. Phase maps have been plotted to determine the mixing/demixing behavior of this alloy according the particle shape. Cu-Ni nanoalloy can form a mixed particle or a Janus one depending on the synthesis temperature. Surface segregation is also considered and reveals a nickel surface-enrichment. Finally, this paper provides a useful roadmap for experimentalists.


Subject(s)
Copper/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Models, Chemical , Nickel/chemistry , Computer Simulation , Materials Testing , Models, Molecular , Particle Size , Phase Transition , Surface Properties , Temperature
8.
Nano Lett ; 14(11): 6718-26, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25338111

ABSTRACT

Gold-copper (Au-Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core-shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations.


Subject(s)
Copper/chemistry , Gold Alloys/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Molecular Dynamics Simulation , Nanotechnology , Particle Size , Phase Transition , Thermodynamics
9.
Beilstein J Nanotechnol ; 5: 1371-9, 2014.
Article in English | MEDLINE | ID: mdl-25247120

ABSTRACT

Highly monodispersed Cu-Pt bimetallic nanoclusters were synthesized by a facile synthesis approach. Analysis of transmission electron microscopy (TEM) and spherical aberration (C s)-corrected scanning transmission electron microscopy (STEM) images shows that the average diameter of the Cu-Pt nanoclusters is 3.0 ± 1.0 nm. The high angle annular dark field (HAADF-STEM) images, intensity profiles, and energy dispersive X-ray spectroscopy (EDX) line scans, allowed us to study the distribution of Cu and Pt with atomistic resolution, finding that Pt is embedded randomly in the Cu lattice. A novel simulation method is applied to study the growth mechanism, which shows the formation of alloy structures in good agreement with the experimental evidence. The findings give insight into the formation mechanism of the nanosized Cu-Pt bimetallic catalysts.

10.
Phys Chem Chem Phys ; 16(30): 16278-83, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24975090

ABSTRACT

Trimetallic nanoparticles possess different properties than their mono- and bi-metallic counterparts, opening a wide range of possibilities for diverse potential applications with the notion to study possible morphology, atomic ordering, reduce precious metal consumption and many others. In this paper, we present a comprehensive experimental study on AuCu-Pt trimetallic nanoparticles with an average diameter of 15 ± 1.0 nm, synthesized in a one-pot synthesis method and characterized by the Cs-corrected scanning transmission electron microscopy technique that allowed us to probe the structure at the atomic level resolution. A new way to control the nanoparticle morphology by the presence of third metal (Pt) is also discussed by the overgrowth of Pt on the as prepared AuCu core by Frank-van der Merwe (FM) layer-by-layer and Stranski-Krastanov (SK) island-on-wetting-layer growth modes. With the application of this research, we are now a step closer to produce optimum catalysts in which the active phase forms only surface monolayers. In addition, the nanoalloy exhibits high index facet surfaces with {211} and {321} families that are highly open-structure surfaces and are interesting for the catalytic applications.


Subject(s)
Copper/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Microscopy, Electron, Scanning Transmission , Surface Properties
11.
Phys Chem Chem Phys ; 16(34): 18098-104, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-24875295

ABSTRACT

The structural order in ultrathin films of monolayer protected clusters (MPCs) is important in a number of application areas but can be difficult to demonstrate by conventional methods, particularly when the metallic core dimension, d, is in the intermediate size-range, 1.5 < d < 5.0 nm. Here, improved techniques for the synthesis of monodisperse thiolate-protected gold nanoparticles have made possible the production of dodecane-thiolate saturated ∼4 ± 0.5 nm Au clusters with single-crystal core structure and morphology. An ultrathin ordered film or superlattice of these nanocrystal-core MPCs is prepared and investigated using aberration corrected scanning/transmission electron microscopy (STEM) which allowed imaging of long-range hexagonally ordered superlattices of the nanocrystals, separated by the thiolate groups. The lattice constants determined by direct imaging are in good agreement with those determined by small-angle electron diffraction. The STEM image revealed the characteristic grain boundary (GB) with sigma (Σ) 13 in the interface between two crystals. The formation and structures found are interpreted on the basis of theoretical calculations employing molecular dynamics (MD) simulations and coarse-grained (CG) approach.


Subject(s)
Gold/chemistry , Membranes, Artificial , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Models, Chemical , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Computer Simulation , Crystallization/methods , Materials Testing , Models, Molecular , Particle Size
12.
Nanoscale ; 5(24): 12456-63, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24165796

ABSTRACT

We report the synthesis, structural characterization, and atomistic simulations of AgPd-Pt trimetallic (TM) nanoparticles. Two types of structure were synthesized using a relatively facile chemical method: multiply twinned core-shell, and hollow particles. The nanoparticles were small in size, with an average diameter of 11 nm and a narrow distribution, and their characterization by aberration corrected scanning transmission electron microscopy allowed us to probe the structure of the particles at an atomistic level. In some nanoparticles, the formation of a hollow structure was also observed, that facilitates the alloying of Ag and Pt in the shell region and the segregation of Ag atoms on the surface, affecting the catalytic activity and stability. We also investigated the growth mechanism of the nanoparticles using grand canonical Monte Carlo simulations, and we have found that Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process. We found very good agreement between the simulated structures and those observed experimentally.

13.
Langmuir ; 29(29): 9231-9, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23802756

ABSTRACT

Au-core, Au3Cu-alloyed shell nanoparticles passivated with CuS2 were fabricated by the polyol method, and characterized by Cs-corrected scanning transmission electron microscopy. The analysis of the high-resolution micrographs reveals that these nanoparticles have decahedral structure with shell periodicity, and that each of the particles is composed by Au core and Au3Cu alloyed shell surrounded by CuS2 surface layer. X-ray diffraction measurements and results from numerical simulations confirm these findings. From the atomic resolution micrographs, we identified edge dislocations at the twin boundaries of the particles, as well as evidence of the diffusion of Cu atoms into the Au region, and the reordering of the lattice on the surface, close to the vertices of the particle. These defects will impact the atomic and electronic structures, thereby changing the physical and chemical properties of the nanoparticles. On the other hand, we show for the first time the formation of an ordered superlattice of Au3Cu and a self-capping layer made using one of the alloy metals. This has significant consequences on the physical mechanism that form multicomponent nanoparticles.


Subject(s)
Cesium , Copper Sulfate/chemistry , Copper/chemistry , Gold/chemistry , Microscopy, Electron, Scanning Transmission , Nanoparticles/chemistry , Diffusion
14.
J Phys Chem C Nanomater Interfaces ; 116(44): 23596-23602, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23407690

ABSTRACT

Bimetallic nanoparticles present different properties than their monometallic counterparts, opening a wide range of possibilities for different applications. PtPd nanoparticles have raised interest for their many applications in fuel cells, ethanol and methanol oxidation reactions, hydrogen storage, etc. However, the cost of Pt makes it unpractical to use in big quantities; therefore, one of the big challenges is to synthesize very small catalysts in order to maximize the efficiency in their use. In this work, we synthesized polyhedral PtPd core-shell nanoparticles under 20 nm and characterized them by Cs-corrected scanning transmission electron microscopy. This technique allowed us to probe the structure at the atomic level of these nanoparticles revealing new structural information. We determined the structure of the three main polyhedral morphologies obtained in the synthesis: octahedral, decahedral and triangular plates. Decahedral PtPd core-shell nanoparticles are novel morphologies for this system. Morphology and defects present in the nanoparticles are shown and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...