Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 54(3): 204-13, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16817202

ABSTRACT

The synemin gene encodes proteins belonging to the intermediate filament family. These proteins confer resistance to mechanical stress and modulate cell shape. Three synemin isoforms, of 180 (H), 150 (M) and 41 (L) kDa, are produced by alternative splicing of the pre-mRNA and are regulated differently during development. The three isoforms differ in their C-terminal tail domains, while their IF rod domains are identical. Synemins H/M occurred together with nestin and vimentin in glial progenitors during the early differentiation of the developing mouse central nervous system. They are later found in GFAP-labeled cells. In contrast, the L isoform appeared only in neurons, together with neurofilaments and betaIII-tubulin in the brain after birth. However, synemin L appeared from E13 in the peripheral nervous system, where it was confined to the neurons of spinal ganglia. In the meantime, the synemin H/M isoforms were found in both the neurons and Schwann cells of the sensorial ganglia from E11. Tissue fractionation and purification of IFs from adult mouse spinal cord revealed that the synemin L isoform binds to neurofilaments associated with the membrane compartment. This report describes the synthesis of the three synemin isoforms by selective cell types, and their temporal and spatial distributions. Mechanisms specific to neurons and glia probably control the splicing of the common synemin mRNA and the synthesis of each synemin isoform.


Subject(s)
Intermediate Filament Proteins/genetics , Neuroglia/physiology , Neurons/physiology , Alternative Splicing , Animals , Brain/embryology , Brain/physiology , Cells, Cultured , Immunohistochemistry , Mice , Muscle Proteins/genetics , Neuroglia/cytology , Neurons/cytology , Protein Isoforms/genetics , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/embryology , Spinal Cord/physiology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...