Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Sci Rep ; 14(1): 12984, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38839768

ABSTRACT

The most rapidly expanding type of solar cells are the Perovskite Solar Cells (PSCs), because of its high device performance, ease of synthesis, high open-circuit voltage, and affordability. Despite these advantages, the development of perovskite-based solar cells continues to be impeded by the issues with perovskite stability and the utilization of the hazardous heavy element lead (Pb). The study emphasizes on the bifacial structure that maintains the conventional absorber layer and electron transport layer (ETL) in the optimized PSC structure. This study employs SCAPS software for device simulation to comprehensively analyze how various parameters affect the performance of solar cells. Additionally, doping concentration variation in both ETL and HTL are explored. The simulation reveals that changing device structure from monofacial to bifacial significantly influences PSC performance, demonstrating that optimizing individual layers effectively enhances overall solar cell performance. The optimized structure achieves impressive PSC performance metrics through parametric analysis, such as voltage (VOC) of 1.18 V, fill factor (FF) of 82.24%, current density (JSC) of 27.12 mA/cm2, power conversion efficiency (PCE) of 27.90% for an incident solar spectrum from the ETL side, and power conversion efficiency (PCE) of 19.86% for an incident solar spectrum from the HTL side, the calculated bifaciality factor (BF) for this structure is 71.18%.

2.
Waste Manag ; 174: 439-450, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113669

ABSTRACT

The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.


Subject(s)
Garbage , Waste Management , Reproducibility of Results , Neural Networks, Computer , Machine Learning
3.
Sensors (Basel) ; 23(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37960589

ABSTRACT

The human liver exhibits variable characteristics and anatomical information, which is often ambiguous in radiological images. Machine learning can be of great assistance in automatically segmenting the liver in radiological images, which can be further processed for computer-aided diagnosis. Magnetic resonance imaging (MRI) is preferred by clinicians for liver pathology diagnosis over volumetric abdominal computerized tomography (CT) scans, due to their superior representation of soft tissues. The convenience of Hounsfield unit (HoU) based preprocessing in CT scans is not available in MRI, making automatic segmentation challenging for MR images. This study investigates multiple state-of-the-art segmentation networks for liver segmentation from volumetric MRI images. Here, T1-weighted (in-phase) scans are investigated using expert-labeled liver masks from a public dataset of 20 patients (647 MR slices) from the Combined Healthy Abdominal Organ Segmentation grant challenge (CHAOS). The reason for using T1-weighted images is that it demonstrates brighter fat content, thus providing enhanced images for the segmentation task. Twenty-four different state-of-the-art segmentation networks with varying depths of dense, residual, and inception encoder and decoder backbones were investigated for the task. A novel cascaded network is proposed to segment axial liver slices. The proposed framework outperforms existing approaches reported in the literature for the liver segmentation task (on the same test set) with a dice similarity coefficient (DSC) score and intersect over union (IoU) of 95.15% and 92.10%, respectively.


Subject(s)
Deep Learning , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Abdomen/diagnostic imaging , Liver/diagnostic imaging
4.
J Mater Chem B ; 11(44): 10507-10537, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37873807

ABSTRACT

The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Prosthesis Design , Arthroplasty, Replacement, Hip/methods , Hip Joint/surgery , Femur/surgery
5.
Front Plant Sci ; 14: 1175515, 2023.
Article in English | MEDLINE | ID: mdl-37794930

ABSTRACT

Mulberry leaves feed Bombyx mori silkworms to generate silk thread. Diseases that affect mulberry leaves have reduced crop and silk yields in sericulture, which produces 90% of the world's raw silk. Manual leaf disease identification is tedious and error-prone. Computer vision can categorize leaf diseases early and overcome the challenges of manual identification. No mulberry leaf deep learning (DL) models have been reported. Therefore, in this study, two types of leaf diseases: leaf rust and leaf spot, with disease-free leaves, were collected from two regions of Bangladesh. Sericulture experts annotated the leaf images. The images were pre-processed, and 6,000 synthetic images were generated using typical image augmentation methods from the original 764 training images. Additional 218 and 109 images were employed for testing and validation respectively. In addition, a unique lightweight parallel depth-wise separable CNN model, PDS-CNN was developed by applying depth-wise separable convolutional layers to reduce parameters, layers, and size while boosting classification performance. Finally, the explainable capability of PDS-CNN is obtained through the use of SHapley Additive exPlanations (SHAP) evaluated by a sericulture specialist. The proposed PDS-CNN outperforms well-known deep transfer learning models, achieving an optimistic accuracy of 95.05 ± 2.86% for three-class classifications and 96.06 ± 3.01% for binary classifications with only 0.53 million parameters, 8 layers, and a size of 6.3 megabytes. Furthermore, when compared with other well-known transfer models, the proposed model identified mulberry leaf diseases with higher accuracy, fewer factors, fewer layers, and lower overall size. The visually expressive SHAP explanation images validate the models' findings aligning with the predictions made the sericulture specialist. Based on these findings, it is possible to conclude that the explainable AI (XAI)-based PDS-CNN can provide sericulture specialists with an effective tool for accurately categorizing mulberry leaves.

6.
Sensors (Basel) ; 23(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765780

ABSTRACT

Colorectal polyps in the colon or rectum are precancerous growths that can lead to a more severe disease called colorectal cancer. Accurate segmentation of polyps using medical imaging data is essential for effective diagnosis. However, manual segmentation by endoscopists can be time-consuming, error-prone, and expensive, leading to a high rate of missed anomalies. To solve this problem, an automated diagnostic system based on deep learning algorithms is proposed to find polyps. The proposed IRv2-Net model is developed using the UNet architecture with a pre-trained InceptionResNetV2 encoder to extract most features from the input samples. The Test Time Augmentation (TTA) technique, which utilizes the characteristics of the original, horizontal, and vertical flips, is used to gain precise boundary information and multi-scale image features. The performance of numerous state-of-the-art (SOTA) models is compared using several metrics such as accuracy, Dice Similarity Coefficients (DSC), Intersection Over Union (IoU), precision, and recall. The proposed model is tested on the Kvasir-SEG and CVC-ClinicDB datasets, demonstrating superior performance in handling unseen real-time data. It achieves the highest area coverage in the area under the Receiver Operating Characteristic (ROC-AUC) and area under Precision-Recall (AUC-PR) curves. The model exhibits excellent qualitative testing outcomes across different types of polyps, including more oversized, smaller, over-saturated, sessile, or flat polyps, within the same dataset and across different datasets. Our approach can significantly minimize the number of missed rating difficulties. Lastly, a graphical interface is developed for producing the mask in real-time. The findings of this study have potential applications in clinical colonoscopy procedures and can serve based on further research and development.


Subject(s)
Deep Learning , Algorithms , Area Under Curve , Benchmarking , Image Processing, Computer-Assisted
7.
Sensors (Basel) ; 23(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37631693

ABSTRACT

Every one of us has a unique manner of communicating to explore the world, and such communication helps to interpret life. Sign language is the popular language of communication for hearing and speech-disabled people. When a sign language user interacts with a non-sign language user, it becomes difficult for a signer to express themselves to another person. A sign language recognition system can help a signer to interpret the sign of a non-sign language user. This study presents a sign language recognition system that is capable of recognizing Arabic Sign Language from recorded RGB videos. To achieve this, two datasets were considered, such as (1) the raw dataset and (2) the face-hand region-based segmented dataset produced from the raw dataset. Moreover, operational layer-based multi-layer perceptron "SelfMLP" is proposed in this study to build CNN-LSTM-SelfMLP models for Arabic Sign Language recognition. MobileNetV2 and ResNet18-based CNN backbones and three SelfMLPs were used to construct six different models of CNN-LSTM-SelfMLP architecture for performance comparison of Arabic Sign Language recognition. This study examined the signer-independent mode to deal with real-time application circumstances. As a result, MobileNetV2-LSTM-SelfMLP on the segmented dataset achieved the best accuracy of 87.69% with 88.57% precision, 87.69% recall, 87.72% F1 score, and 99.75% specificity. Overall, face-hand region-based segmentation and SelfMLP-infused MobileNetV2-LSTM-SelfMLP surpassed the previous findings on Arabic Sign Language recognition by 10.970% accuracy.


Subject(s)
Deep Learning , Humans , Language , Sign Language , Communication , Recognition, Psychology
8.
Diagnostics (Basel) ; 13(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37568900

ABSTRACT

Intracranial hemorrhage (ICH) occurs when blood leaks inside the skull as a result of trauma to the skull or due to medical conditions. ICH usually requires immediate medical and surgical attention because the disease has a high mortality rate, long-term disability potential, and other potentially life-threatening complications. There are a wide range of severity levels, sizes, and morphologies of ICHs, making accurate identification challenging. Hemorrhages that are small are more likely to be missed, particularly in healthcare systems that experience high turnover when it comes to computed tomography (CT) investigations. Although many neuroimaging modalities have been developed, CT remains the standard for diagnosing trauma and hemorrhage (including non-traumatic ones). A CT scan-based diagnosis can provide time-critical, urgent ICH surgery that could save lives because CT scan-based diagnoses can be obtained rapidly. The purpose of this study is to develop a machine-learning algorithm that can detect intracranial hemorrhage based on plain CT images taken from 75 patients. CT images were preprocessed using brain windowing, skull-stripping, and image inversion techniques. Hemorrhage segmentation was performed using multiple pre-trained models on preprocessed CT images. A U-Net model with DenseNet201 pre-trained encoder outperformed other U-Net, U-Net++, and FPN (Feature Pyramid Network) models with the highest Dice similarity coefficient (DSC) and intersection over union (IoU) scores, which were previously used in many other medical applications. We presented a three-dimensional brain model highlighting hemorrhages from ground truth and predicted masks. The volume of hemorrhage was measured volumetrically to determine the size of the hematoma. This study is essential in examining ICH for diagnostic purposes in clinical practice by comparing the predicted 3D model with the ground truth.

9.
Polymers (Basel) ; 15(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37514453

ABSTRACT

This study experimentally investigates the effect of green polymeric nanoparticles on the interfacial tension (IFT) and wettability of carbonate reservoirs to effectively change the enhanced oil recovery (EOR) parameters. This experimental study compares the performance of xanthan/magnetite/SiO2 nanocomposites (NC) and several green materials, i.e., eucalyptus plant nanocomposites (ENC) and walnut shell ones (WNC) on the oil recovery with performing series of spontaneous imbibition tests. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDAX), and BET (Brunauer, Emmett, and Teller) surface analysis tests are also applied to monitor the morphology and crystalline structure of NC, ENC, and WNC. Then, the IFT and contact angle (CA) were measured in the presence of these materials under various reservoir conditions and solvent salinities. It was found that both ENC and WNC nanocomposites decreased CA and IFT, but ENC performed better than WNC under different salinities, namely, seawater (SW), double diluted salted (2 SW), ten times diluted seawater (10 SW), formation water (FW), and distilled water (DIW), which were applied at 70 °C, 2000 psi, and 0.05 wt.% nanocomposites concentration. Based on better results, ENC nanofluid at salinity concentrations of 10 SW and 2 SW ENC were selected for the EOR of carbonate rocks under reservoir conditions. The contact angles of ENC nanocomposites at the salinities of 2 SW and 10 SW were 49 and 43.4°, respectively. Zeta potential values were -44.39 and -46.58 for 2 SW and 10 SW ENC nanofluids, which is evidence of the high stability of ENC nanocomposites. The imbibition results at 70 °C and 2000 psi with 0.05 wt.% ENC at 10 SW and 2 SW led to incremental oil recoveries of 64.13% and 60.12%, respectively, compared to NC, which was 46.16%.

10.
Sci Rep ; 13(1): 12161, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37500713

ABSTRACT

The current trend of chemical industries demands green processing, in particular with employing natural substances such as sugar-derived compounds. This matter has encouraged academic and industrial sections to seek new alternatives for extracting these materials. Ionic liquids (ILs) are currently paving the way for efficient extraction processes. To this end, accurate estimation of solubility data is of great importance. This study relies on machine learning methods for modeling the solubility data of sugar alcohols (SAs) in ILs. An initial relevancy analysis approved that the SA-IL equilibrium governs by the temperature, density and molecular weight of ILs, as well as the molecular weight, fusion temperature, and fusion enthalpy of SAs. Also, temperature and fusion temperature have the strongest influence on the SAs solubility in ILs. The performance of artificial neural networks (ANNs), least-squares support vector regression (LSSVR), and adaptive neuro-fuzzy inference systems (ANFIS) to predict SA solubility in ILs were compared utilizing a large databank (647 data points of 19 SAs and 21 ILs). Among the investigated models, ANFIS offered the best accuracy with an average absolute relative deviation (AARD%) of 7.43% and a coefficient of determination (R2) of 0.98359. The best performance of the ANFIS model was obtained with a cluster center radius of 0.435 when trained with 85% of the databank. Further analyses of the ANFIS model based on the leverage method revealed that this model is reliable enough due to its high level of coverage and wide range of applicability. Accordingly, this model can be effectively utilized in modeling the solubilities of SAs in ILs.

11.
Diagnostics (Basel) ; 13(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37370895

ABSTRACT

Transcranial doppler (TCD) ultrasound is a non-invasive imaging technique that can be used for continuous monitoring of blood flow in the brain through the major cerebral arteries by calculating the cerebral blood flow velocity (CBFV). Since the brain requires a consistent supply of blood to function properly and meet its metabolic demand, a change in CBVF can be an indication of neurological diseases. Depending on the severity of the disease, the symptoms may appear immediately or may appear weeks later. For the early detection of neurological diseases, a classification model is proposed in this study, with the ability to distinguish healthy subjects from critically ill subjects. The TCD ultrasound database used in this study contains signals from the middle cerebral artery (MCA) of 6 healthy subjects and 12 subjects with known neurocritical diseases. The classification model works based on the maximal blood flow velocity waveforms extracted from the TCD ultrasound. Since the signal quality of the recorded TCD ultrasound is highly dependent on the operator's skillset, a noisy and corrupted signal can exist and can add biases to the classifier. Therefore, a deep learning classifier, trained on a curated and clean biomedical signal can reliably detect neurological diseases. For signal classification, this study proposes a Self-organized Operational Neural Network (Self-ONN)-based deep learning model Self-ResAttentioNet18, which achieves classification accuracy of 96.05% with precision, recall, f1 score, and specificity of 96.06%, 96.05%, 96.06%, and 96.09%, respectively. With an area under the ROC curve of 0.99, the model proves its feasibility to confidently classify middle cerebral artery (MCA) waveforms in near real-time.

12.
Neural Comput Appl ; : 1-23, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37362565

ABSTRACT

Nowadays, quick, and accurate diagnosis of COVID-19 is a pressing need. This study presents a multimodal system to meet this need. The presented system employs a machine learning module that learns the required knowledge from the datasets collected from 930 COVID-19 patients hospitalized in Italy during the first wave of COVID-19 (March-June 2020). The dataset consists of twenty-five biomarkers from electronic health record and Chest X-ray (CXR) images. It is found that the system can diagnose low- or high-risk patients with an accuracy, sensitivity, and F1-score of 89.03%, 90.44%, and 89.03%, respectively. The system exhibits 6% higher accuracy than the systems that employ either CXR images or biomarker data. In addition, the system can calculate the mortality risk of high-risk patients using multivariate logistic regression-based nomogram scoring technique. Interested physicians can use the presented system to predict the early mortality risks of COVID-19 patients using the web-link: Covid-severity-grading-AI. In this case, a physician needs to input the following information: CXR image file, Lactate Dehydrogenase (LDH), Oxygen Saturation (O2%), White Blood Cells Count, C-reactive protein, and Age. This way, this study contributes to the management of COVID-19 patients by predicting early mortality risk. Supplementary Information: The online version contains supplementary material available at 10.1007/s00521-023-08606-w.

13.
Bioengineering (Basel) ; 10(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37237612

ABSTRACT

Magnetic resonance imaging (MRI) is commonly used in medical diagnosis and minimally invasive image-guided operations. During an MRI scan, the patient's electrocardiogram (ECG) may be required for either gating or patient monitoring. However, the challenging environment of an MRI scanner, with its several types of magnetic fields, creates significant distortions of the collected ECG data due to the Magnetohydrodynamic (MHD) effect. These changes can be seen as irregular heartbeats. These distortions and abnormalities hamper the detection of QRS complexes, and a more in-depth diagnosis based on the ECG. This study aims to reliably detect R-peaks in the ECG waveforms in 3 Tesla (T) and 7T magnetic fields. A novel model, Self-Attention MHDNet, is proposed to detect R peaks from the MHD corrupted ECG signal through 1D-segmentation. The proposed model achieves a recall and precision of 99.83% and 99.68%, respectively, for the ECG data acquired in a 3T setting, while 99.87% and 99.78%, respectively, in a 7T setting. This model can thus be used in accurately gating the trigger pulse for the cardiovascular functional MRI.

14.
Bioengineering (Basel) ; 10(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37237649

ABSTRACT

Electroencephalogram (EEG) signals immensely suffer from several physiological artifacts, including electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) artifacts, which must be removed to ensure EEG's usability. This paper proposes a novel one-dimensional convolutional neural network (1D-CNN), i.e., MultiResUNet3+, to denoise physiological artifacts from corrupted EEG. A publicly available dataset containing clean EEG, EOG, and EMG segments is used to generate semi-synthetic noisy EEG to train, validate and test the proposed MultiResUNet3+, along with four other 1D-CNN models (FPN, UNet, MCGUNet, LinkNet). Adopting a five-fold cross-validation technique, all five models' performance is measured by estimating temporal and spectral percentage reduction in artifacts, temporal and spectral relative root mean squared error, and average power ratio of each of the five EEG bands to whole spectra. The proposed MultiResUNet3+ achieved the highest temporal and spectral percentage reduction of 94.82% and 92.84%, respectively, in EOG artifacts removal from EOG-contaminated EEG. Moreover, compared to the other four 1D-segmentation models, the proposed MultiResUNet3+ eliminated 83.21% of the spectral artifacts from the EMG-corrupted EEG, which is also the highest. In most situations, our proposed model performed better than the other four 1D-CNN models, evident by the computed performance evaluation metrics.

15.
Sensors (Basel) ; 23(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37177662

ABSTRACT

Rapid identification of COVID-19 can assist in making decisions for effective treatment and epidemic prevention. The PCR-based test is expert-dependent, is time-consuming, and has limited sensitivity. By inspecting Chest R-ray (CXR) images, COVID-19, pneumonia, and other lung infections can be detected in real time. The current, state-of-the-art literature suggests that deep learning (DL) is highly advantageous in automatic disease classification utilizing the CXR images. The goal of this study is to develop models by employing DL models for identifying COVID-19 and other lung disorders more efficiently. For this study, a dataset of 18,564 CXR images with seven disease categories was created from multiple publicly available sources. Four DL architectures including the proposed CNN model and pretrained VGG-16, VGG-19, and Inception-v3 models were applied to identify healthy and six lung diseases (fibrosis, lung opacity, viral pneumonia, bacterial pneumonia, COVID-19, and tuberculosis). Accuracy, precision, recall, f1 score, area under the curve (AUC), and testing time were used to evaluate the performance of these four models. The results demonstrated that the proposed CNN model outperformed all other DL models employed for a seven-class classification with an accuracy of 93.15% and average values for precision, recall, f1-score, and AUC of 0.9343, 0.9443, 0.9386, and 0.9939. The CNN model equally performed well when other multiclass classifications including normal and COVID-19 as the common classes were considered, yielding accuracy values of 98%, 97.49%, 97.81%, 96%, and 96.75% for two, three, four, five, and six classes, respectively. The proposed model can also identify COVID-19 with shorter training and testing times compared to other transfer learning models.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , COVID-19/diagnosis , Pneumonia, Viral/diagnostic imaging , Area Under Curve , Decision Making , Machine Learning
16.
Eng Appl Artif Intell ; 122: 106130, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37006447

ABSTRACT

The world is slowly recovering from the Coronavirus disease 2019 (COVID-19) pandemic; however, humanity has experienced one of its According to work by Mishra et al. (2020), the study's first phase included a cohort of 5,262 subjects, with 3,325 Fitbit users constituting the majority. However, among this large cohort of 5,262 subjects, most significant trials in modern times only to learn about its lack of preparedness in the face of a highly contagious pathogen. To better prepare the world for any new mutation of the same pathogen or the newer ones, technological development in the healthcare system is a must. Hence, in this work, PCovNet+, a deep learning framework, was proposed for smartwatches and fitness trackers to monitor the user's Resting Heart Rate (RHR) for the infection-induced anomaly. A convolutional neural network (CNN)-based variational autoencoder (VAE) architecture was used as the primary model along with a long short-term memory (LSTM) network to create latent space embeddings for the VAE. Moreover, the framework employed pre-training using normal data from healthy subjects to circumvent the data shortage problem in the personalized models. This framework was validated on a dataset of 68 COVID-19-infected subjects, resulting in anomalous RHR detection with precision, recall, F-beta, and F-1 score of 0.993, 0.534, 0.9849, and 0.6932, respectively, which is a significant improvement compared to the literature. Furthermore, the PCovNet+ framework successfully detected COVID-19 infection for 74% of the subjects (47% presymptomatic and 27% post-symptomatic detection). The results prove the usability of such a system as a secondary diagnostic tool enabling continuous health monitoring and contact tracing.

17.
Materials (Basel) ; 16(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837096

ABSTRACT

With an expectation of an increased number of revision surgeries and patients receiving orthopedic implants in the coming years, the focus of joint replacement research needs to be on improving the mechanical properties of implants. Head-stem trunnion fixation provides superior load support and implant stability. Fretting wear is formed at the trunnion because of the dynamic load activities of patients, and this eventually causes the total hip implant system to fail. To optimize the design, multiple experiments with various trunnion geometries have been performed by researchers to examine the wear rate and associated mechanical performance characteristics of the existing head-stem trunnion. The objective of this work is to quantify and evaluate the performance parameters of smooth and novel spiral head-stem trunnion types under dynamic loading situations. This study proposes a finite element method for estimating head-stem trunnion performance characteristics, namely contact pressure and sliding distance, for both trunnion types under walking and jogging dynamic loading conditions. The wear rate for both trunnion types was computed using the Archard wear model for a standard number of gait cycles. The experimental results indicated that the spiral trunnion with a uniform contact pressure distribution achieved more fixation than the smooth trunnion. However, the average contact pressure distribution was nearly the same for both trunnion types. The maximum and average sliding distances were both shorter for the spiral trunnion; hence, the summed sliding distance was approximately 10% shorter for spiral trunnions than that of the smooth trunnion over a complete gait cycle. Owing to a lower sliding ability, hip implants with spiral trunnions achieved more stability than those with smooth trunnions. The anticipated wear rate for spiral trunnions was 0.039 mm3, which was approximately 10% lower than the smooth trunnion wear rate of 0.048 mm3 per million loading cycles. The spiral trunnion achieved superior fixation stability with a shorter sliding distance and a lower wear rate than the smooth trunnion; therefore, the spiral trunnion can be recommended for future hip implant systems.

18.
Bioengineering (Basel) ; 10(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36829661

ABSTRACT

The continuous monitoring of respiratory rate (RR) and oxygen saturation (SpO2) is crucial for patients with cardiac, pulmonary, and surgical conditions. RR and SpO2 are used to assess the effectiveness of lung medications and ventilator support. In recent studies, the use of a photoplethysmogram (PPG) has been recommended for evaluating RR and SpO2. This research presents a novel method of estimating RR and SpO2 using machine learning models that incorporate PPG signal features. A number of established methods are used to extract meaningful features from PPG. A feature selection approach was used to reduce the computational complexity and the possibility of overfitting. There were 19 models trained for both RR and SpO2 separately, from which the most appropriate regression model was selected. The Gaussian process regression model outperformed all the other models for both RR and SpO2 estimation. The mean absolute error (MAE) for RR was 0.89, while the root-mean-squared error (RMSE) was 1.41. For SpO2, the model had an RMSE of 0.98 and an MAE of 0.57. The proposed system is a state-of-the-art approach for estimating RR and SpO2 reliably from PPG. If RR and SpO2 can be consistently and effectively derived from the PPG signal, patients can monitor their RR and SpO2 at a cheaper cost and with less hassle.

19.
Biosensors (Basel) ; 13(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36671914

ABSTRACT

In this paper, a surface acoustic wave (SAW) sensor for hip implant geometry was proposed for the application of total hip replacement. A two-port SAW device was numerically investigated for implementation with an operating frequency of 872 MHz that can be used in more common radio frequency interrogator units. A finite element analysis of the device was developed for a lithium niobate (LiNBO3) substrate with a Rayleigh velocity of 3488 m/s on COMSOL Multiphysics. The Multiphysics loading and frequency results highlighted a good uniformity with numerical results. Afterwards, a hip implant geometry was developed. The SAW sensor was mounted at two locations on the implant corresponding to two regions along the shaft of the femur bone. Three discrete conditions were studied for the feasibility of the implant with upper- and lower-body loading. The loading simulations highlighted that the stresses experienced do not exceed the yield strengths. The voltage output results indicated that the SAW sensor can be implanted in the hip implant for hip implant-loosening detection applications.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Finite Element Analysis , Feasibility Studies , Sound
20.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9363-9374, 2023 11.
Article in English | MEDLINE | ID: mdl-35344496

ABSTRACT

Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low-quality and noisy signals acquired from mobile electrocardiogram (ECG) sensors, such as Holter monitors. Recently, this issue has been addressed by deep 1-D convolutional neural networks (CNNs) that have achieved state-of-the-art performance levels in Holter monitors; however, they pose a high complexity level that requires special parallelized hardware setup for real-time processing. On the other hand, their performance deteriorates when a compact network configuration is used instead. This is an expected outcome as recent studies have demonstrated that the learning performance of CNNs is limited due to their strictly homogenous configuration with the sole linear neuron model. This has been addressed by operational neural networks (ONNs) with their heterogenous network configuration encapsulating neurons with various nonlinear operators. In this study, to further boost the peak detection performance along with an elegant computational efficiency, we propose 1-D Self-Organized ONNs (Self-ONNs) with generative neurons. The most crucial advantage of 1-D Self-ONNs over the ONNs is their self-organization capability that voids the need to search for the best operator set per neuron since each generative neuron has the ability to create the optimal operator during training. The experimental results over the China Physiological Signal Challenge-2020 (CPSC) dataset with more than one million ECG beats show that the proposed 1-D Self-ONNs can significantly surpass the state-of-the-art deep CNN with less computational complexity. Results demonstrate that the proposed solution achieves a 99.10% F1-score, 99.79% sensitivity, and 98.42% positive predictivity in the CPSC dataset, which is the best R-peak detection performance ever achieved.


Subject(s)
Electrocardiography, Ambulatory , Neural Networks, Computer , Electrocardiography/methods , China , Linear Models
SELECTION OF CITATIONS
SEARCH DETAIL
...