Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(37): 56442-56453, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35347612

ABSTRACT

There is a strong and ever-escalating need for sterilization tools that are effective against a broad range of pathogenic microorganisms. To address this issue, this study evaluates the inactivation potential of arc and pulsed spark plasma discharges on Pseudomonas aeruginosa, Staphylococcus aureus, Microsporum canis, Trichophyton mentagrophytes, and Candida albicans microorganisms. Our results show that the electrical discharge plasma systems are effective in the inactivation of pathogenic microorganisms. The inactivation of the considered strains was greatly affected by the type of microorganisms. Higher viability losses of the pathogenic strains were observed in bacterial strains than in the fungal strains. Moreover, in the case of fungal strains, the population of C. albicans was decreased the most, followed by Trichophyton mentagrophyte, while the population of Microsporum canis was decreased the least. Besides, the arc discharge system was compared with the pulsed spark discharge system. It can be obtained from the results that the pulsed spark discharge treatment successfully enhanced the reduction of the pathogenic cells more than the arc discharge treatment. The higher efficiency of the pulsed spark discharge is due to the generation of discharge streamers on the water surface. The SEM analyses showed that electrical discharge plasmas produced serious damage to pathogenic eukaryotic and prokaryotic microorganisms. Also, the plasma-induced changes in pH values and temperature values were measured. The pulsed spark discharge-treated samples have more significant changes in pH value while arc discharge-treated samples have larger temperature changes.


Subject(s)
Candida albicans , Methicillin-Resistant Staphylococcus aureus , Arthrodermataceae , Microsporum , Pseudomonas aeruginosa , Staphylococcus aureus
2.
J Diabetes Metab Disord ; 20(1): 621-626, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34178855

ABSTRACT

OBJECTIVE: In recent years many researchers applied cold plasma for wound healing. The cold plasma is irradiated on the surface of wound. In this paper the effect of irradiation of cold plasma on the skin for healing of injured tissue which is located inside body, such as tendon, is evaluated. METHODS: The male, white New Zealand, (20-week-old) were selected. Aloxan injection induced for diabetes induction and a week later the blood glucose level was measured. The standard tendon injury was created. The rabbits was divided in 3 groups. Control group, Plasma treated group at 5 kv, plasma treated group at 10 kv. Cold plasma was applied to the rabbits for 21 days. RESULTS: After 21 days the tendon tissue were considered histologically. The results show that inflammatory cells were significantly lower in the tendon treated with cold plasma at 10 kv than the others, which confirms that cold plasma treatment reduce the inflammation phase. Cold plasma treatment led to increase neovascularation and collagen production. CONCLUSION: The results of this study confirm that the cold plasma treatment of skin has positive effect on healing of tissue inside body.

SELECTION OF CITATIONS
SEARCH DETAIL
...