Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Microbiol ; 62(3): 472, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35974922

ABSTRACT

[This corrects the article DOI: 10.1007/s12088-022-01010-3.].

2.
Indian J Microbiol ; 62(2): 317-321, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35462709

ABSTRACT

Xylooligosaccharides are known prebiotics that various foods and feed industries can utilize. In the present study, the xylan was extracted from sugarcane bagasse and coconut coir by NaOH treatment and it was further structurally characterized by FTIR. Furthermore, Thermomyces lanuginosus VAPS-24 was used to produce endo-xylanase, which induced the production of XOS from both of these substrates. The maximum production of XOS in 8 h using 20U enzyme concentration and 2% substrate concentration was found as 10.10 mg/ml, 5.43 mg/ml for sugarcane bagasse and coconut coir, respectively. Further, the produced XOS was structurally characterized by the NMR, HPLC and FTIR analysis. This study gives a clue that the sugarcane bagasse can be used as the potent producer for the xylooligosaccharides as compared to the coconut coir and can be utilized at the industrial level. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01010-3.

3.
Mol Biotechnol ; 64(1): 75-89, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34542815

ABSTRACT

Xylooligosaccharides having various degrees of polymerization such as xylobiose, xylotriose, and xylotetraose positively affect human health by interacting with gut proteins. The present study aimed to identify proteins present in gut microflora, such as xylosidase, xylulokinase, etc., with the help of retrieved whole-genome annotations and find out the mechanistic interactions of those with the above substrates. The 3D structures of proteins, namely Endo-1,4-beta-xylanase B (XynB) from Lactobacillus brevis and beta-D-xylosidase (Xyl3) from Bifidobacterium adolescentis, were computationally predicted and validated with the help of various bioinformatics tools. Molecular docking studies identified the effectual binding of these proteins to the xylooligosaccharides, and the stabilities of the best-docked complexes were analyzed by molecular dynamic simulation. The present study demonstrated that XynB and Xyl3 showed better effectual binding toward Xylobiose with the binding energies of - 5.96 kcal/mol and - 4.2 kcal/mol, respectively. The interactions were stabilized by several hydrogen bonding having desolvation energy (- 6.59 and - 7.91). The conformational stabilities of the docked complexes were observed in the four selected complexes of XynB-xylotriose, XynB-xylotetraose, Xyl3-xylobiose, and Xyn3-xylotriose by MD simulations. This study showed that the interactions of these four complexes are stable, which means they have complex metabolic activities among each other. Extending these studies of understanding, the interaction between specific probiotics enzymes and their ligands can explore the detailed design of synbiotics in the future.


Subject(s)
Bifidobacterium adolescentis/metabolism , Glucuronates/metabolism , Levilactobacillus brevis/metabolism , Oligosaccharides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bifidobacterium adolescentis/genetics , Computational Biology , Disaccharides/chemistry , Disaccharides/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Genome, Bacterial/genetics , Glucuronates/chemistry , Humans , Levilactobacillus brevis/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Oligosaccharides/chemistry , Probiotics/metabolism , Trisaccharides/chemistry , Trisaccharides/metabolism , Xylosidases/chemistry , Xylosidases/genetics
4.
Indian J Microbiol ; 61(4): 458-466, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34744201

ABSTRACT

The hemicellulose content present in corn cobs can help in producing a high amount of xylooligosaccharides (XOS) in an eco-friendly manner. In this work, the XOS was produced from alkali pre-treated corn-cobs having a true yield of 38 ± 1.4% via enzymatic hydrolysis with the help of xylanase from T. lanuginosus VAPS-24. The production process was optimized to achieve a high concentration of XOS using innovative multi-objective optimization through machine learning modeling and finding out the most suitable parameters where xylobiose production is higher than xylose. The Multi-objective connected neural networks (MOCNN) model with tangent sigmoid activation function yielded a correlation coefficient of 96.51%; there were six optimal sets where xylobiose concentration was higher than xylose. The best-optimized conditions yielded 3.03 mg/ml of xylobiose and 1.31 mg/ml of xylose. Therefore, this novel approach of machine learning can target the increasing demand for xylooligosaccharides in the growing industrial market of prebiotics.

5.
J Biomol Struct Dyn ; 39(11): 3948-3957, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32508225

ABSTRACT

Xylooligosaccharides (XOS) such as xylobiose and xylotriose are prebiotics with important functions and relevance and the study of interaction mechanism between these substrate and their respective enzymes has scope and applications. Thus, the present study aimed to decipher the interaction mechanisms of xylose isomerase (XylA) and xylokinase (XylB) towards their xylo-substrates namely xylobiose and xylotriose by computational modeling and molecular dynamic simulation studies. The three-dimensional structures of XylA and XylB, not available in their native forms, were predicted, energy minimized and validated by various computational biology tools and software. The binding mechanisms of xylobiose and xylotriose towards XylA and XylB were modeled by molecular docking and the stability of the docked complexes was confirmed by molecular dynamic (MD) simulation. The current study suggested that the theoretical models of XylA and XylB possessed good stereo-chemical validity, structural stabilities and minimum energy conformers. The molecular docking studied showed that xylotriose showed better binding interactions to XylA than xylobiose and xylobiose showed better binding interaction to XylB than xylotriose with ideal root mean square deviation (RMS), minimum binding energy (kcal/mol), hydrogen bonding and weak interactions. The MD simulation confirmed the stabilities of the docked complexes predicted by docking studies. The study suggested that interactions between the probiotics and prebiotics and provides the novel insights in exploring synbiotics as functional foods towards their futuristic applications. [Formula: see text]HighlightsThis study deciphers the interactions of xylosubstrates to XylA and XylB.The XylA and XylB possessed ideal structural stability and stereochemistryXylotriose and Xylobiose showed significant interactionsThe interactions of Xylotriose-XylA and Xylobiose-XylB were found stable in MD studies.Communicated by Ramaswamy H. Sarma.


Subject(s)
Aldose-Ketose Isomerases , Molecular Dynamics Simulation , Molecular Docking Simulation
6.
J Food Drug Anal ; 27(3): 649-656, 2019 07.
Article in English | MEDLINE | ID: mdl-31324281

ABSTRACT

Prebiotics are non-digestible carbohydrates which can be used as prime source of energy for gut microflora. These can be naturally occurring in fruit and vegetables or can be made synthetically by enzymatic digestions. New versatile sources of prebiotics had been found nowadays for economic commercialization. This review will decipher on highlighting the importance of prebiotics in immunomodulation and nutrient absorption abilities of gut, as it is important for the anti-effective capacity of the organism especially in the neonatal period. Moreover, new prebiotics transmission strategies with higher penetrating capacity such as microencapsulation and immobilization have been discussed. In addition to this, literature had shown the modulation of gut microflora by the continuous use of prebiotics in many disorders so here, the role of prebiotics in health-related issues such as diabetes and inflammatory bowel disease (IBS) have been explained.


Subject(s)
Diabetes Mellitus/therapy , Gastrointestinal Microbiome , Inflammatory Bowel Diseases/therapy , Probiotics , Diabetes Mellitus/metabolism , Humans , Inflammatory Bowel Diseases/metabolism
7.
3 Biotech ; 9(5): 187, 2019 May.
Article in English | MEDLINE | ID: mdl-31065487

ABSTRACT

Prebiotics are necessary natural and synthetic food ingredients that help in the growth and development of gut microflora. There is a complex relationship between gut dysbiosis and microbes, so alteration in both probiotics and prebiotics can reduce illness of gut, which further plays a decisive role in human health. The prebiotic efficiency can be validated using various in vitro and in vivo experiments, and this gives an important insight to this field. This review focuses on these aspects including the standardized assessment of prebiotics and its metabolic products for customary applications. This review has also summarized the mechanism of their beneficial actions such as immunomodulation, nutrient absorption, pathogen inhibition, etc., and its significance in human nutrition. In addition to this, some fascinating applications of prebiotics in health-related disorders have also discussed, with current challenges in this facet.

8.
Appl Microbiol Biotechnol ; 103(9): 3615-3625, 2019 May.
Article in English | MEDLINE | ID: mdl-30847544

ABSTRACT

Individual's colonization of microbes in the gut is by birth, and there is a complex interaction between the gut microbiome and human. This interaction happens at various levels like genes, transcripts, proteins, and metabolites of different microbes present in the gut. The complete understanding of gut microflora can be studied using systems biology. Further, the contemporaneous information revealed by systems biology can be used for metabolic engineering of gut microbes. The engineered microbes having more pronounced activity helps to rejuvenate the gut microflora that plays a significant role in the management of various life-threatening diseases due to microbial imbalance. This review highlights various systems biology and metabolic engineering approaches. Moreover, this review can also emphasize on the different computational simulation models which can be further used in the efficient engineering of gut microbes. The genetically engineered models can help one to predict the significant pathways present in microbes that can be modified towards diseases treatments.


Subject(s)
Bacteria/metabolism , Biotechnology/methods , Gastrointestinal Microbiome , Animals , Bacteria/genetics , Bacteria/isolation & purification , Humans , Intestines/microbiology , Metabolic Engineering , Systems Biology
9.
Mol Biotechnol ; 60(8): 636-650, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29943149

ABSTRACT

Plants are continually facing biotic and abiotic stresses, and hence, they need to respond and adapt to survive. Plant response during multiple and combined biotic and abiotic stresses is highly complex and varied than the individual stress. These stresses resulted alteration of plant behavior through regulating the levels of microRNA, heat shock proteins, epigenetic variations. These variations can cause many adverse effects on the growth and development of the plant. Further, in natural conditions, several abiotic stresses causing factors make the plant more susceptible to pathogens infections and vice-versa. A very intricate and multifaceted interactions of various biomolecules are involved in metabolic pathways that can direct towards a cross-tolerance and improvement of plant's defence system. Systems biology approach plays a significant role in the investigation of these molecular interactions. The valuable information obtained by systems biology will help to develop stress-resistant plant varieties against multiple stresses. Thus, this review aims to decipher various multilevel interactions at the molecular level under combinatorial biotic and abiotic stresses and the role of systems biology to understand these molecular interactions.


Subject(s)
Plants/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant/genetics , Metabolic Networks and Pathways/genetics , Systems Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...