Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 103(3): e36804, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241565

ABSTRACT

BACKGROUNDS: Omega-3 supplements are endorsed for heart failure (HF) patients to reduce hospitalizations and mortality, offering anti-inflammatory and cardioprotective benefits. METHODS: A comprehensive search was conducted in various databases until November 2022. Eligible studies included clinical trials on patients with HF. Data extraction covered study details, omega-3 specifics, outcomes, and limitations. The JADAD scale was used to assess the risk of bias in randomized controlled trials. RESULTS: The review process involved 572 records from database searches, resulting in 19 studies after eliminating duplicates and screening. These studies assessed the impact of omega-3 on various clinical outcomes, such as mortality, hospitalization, cardiac function, and quality of life. Studied duration varied from weeks to years. Omega-3 supplementation demonstrated potential benefits such as improved heart function, reduced inflammation, and decreased risk of cardiovascular events. CONCLUSION: Omega-3 supplementation could benefit heart disease treatment, potentially reducing therapy duration and improving outcomes. Starting omega-3 supplementation for HF patients seems favorable.


Subject(s)
Fatty Acids, Omega-3 , Heart Diseases , Heart Failure , Humans , Clinical Trials as Topic , Dietary Supplements , Fatty Acids, Omega-3/therapeutic use , Heart Diseases/diet therapy , Heart Diseases/drug therapy , Heart Failure/diet therapy , Heart Failure/drug therapy , Quality of Life
2.
Sci Rep ; 12(1): 5246, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347198

ABSTRACT

One of the most interesting topics in bio-optics is measuring the refractive index of tissues. Accordingly, two novel optical biosensor configurations for cancer cell detections have been proposed in this paper. These structures are composed of one-dimensional photonic crystal (PC) lattices coupled to two metal-insulator-metal (MIM) plasmonic waveguides. Also, the tapering method is used to improve the matching between the MIM plasmonic waveguides and PC structure in the second proposed topology. The PC lattices at the central part of the structures generate photonic bandgaps (PBGs) with sharp edges in the transmission spectra of the biosensors. These sharp edges are suitable candidates for sensing applications. On the other hand, the long distance between two PBG edges causes that when the low PBG edge is used for sensing mechanism, it does not have an overlapping with the high PBG edge by changing the refractive index of the analyte. Therefore, the proposed biosensors can be used for a wide wavelength range. The maximum obtained sensitivities and FOM values of the designed biosensors are equal to 718.6, 714.3 nm/RIU, and 156.217, 60.1 RIU-1, respectively. The metal and insulator materials which are used in the designed structures are silver, air, and GaAs, respectively. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structures. Furthermore, the initial structure of the proposed biosensors is analyzed using the transmission line method to verify the FDTD simulations. The attractive and simple topologies of the proposed biosensors and their high sensitivities make them suitable candidates for biosensing applications.


Subject(s)
Biosensing Techniques , Neoplasms, Basal Cell , Equipment Design , Humans , Optics and Photonics , Silver/chemistry
3.
Sci Rep ; 11(1): 13628, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34211041

ABSTRACT

Reconfigurable and scalable plasmonics demultiplexers have attracted increasing attention due to its potential applications in the nanophotonics. Therefore, here, a novel method to design compact plasmonic wavelength demultiplexers (DEMUXes) is proposed. The designed structures (two, four, and six-channel DEMUXes) consist of symmetrical rectangular resonators (RRs) incorporating metal nano-rod defects (NRDs). In the designed structures, the RRs are laterally coupled to metal-insulator-metal (MIM) waveguides. The wavelengths of the output channels depend on the numbers and radii of the metal NRDs in the RRs. The results obtained from various device geometries, with either a single or multiple output ports, are performed utilizing a single structure, showing real reconfigurability. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structures. The metal and insulator used for the realization of the proposed DEMUXes are silver and air, respectively. The silver's permittivity is characterized by the well-known Drude model. The basic plasmonic filter which is used to design plasmonic DEMUXes is a single-mode filter. A single-mode filter is easier to cope with in circuits with higher complexity such as DEMUXes. Also, different structural parameters of the basic filter are swept and their effects on the filter's frequency response are presented, to provide a better physical insight. Taking into account the compact sizes of the proposed DEMUXes (considering the six-channel DEMUX), they can be used in integrated optical circuits for optical communication purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...