Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(12)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38516969

ABSTRACT

Anharmonic effects play a crucial role in determining thermochemical properties of liquids and gases. For such extended phases, the inclusion of anharmonicity in reliable electronic structure methods is computationally extremely demanding, and hence, anharmonic effects are often lacking in thermochemical calculations. In this study, we apply the quantum cluster equilibrium method to transfer density functional theory calculations at the cluster level to the macroscopic, liquid, and gaseous phase of hydrogen fluoride. This allows us to include anharmonicity, either via vibrational self-consistent field calculations for smaller clusters or using a regression model for larger clusters. We obtain the structural composition of the fluid phases in terms of the population of different clusters as well as isobaric heat capacities as an example for thermodynamic properties. We study the role of anharmonicities for these analyses and observe that, in particular, the dominating structural motifs are rather sensitive to the anharmonicity in vibrational frequencies. The regression model proves to be a promising way to get access to anharmonic features, and the extension to more sophisticated machine-learning models is promising.

2.
Chem Commun (Camb) ; 59(93): 13839-13842, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37921279

ABSTRACT

The famous Brønsted acidity, which is relevant in many areas of experimental and synthetic chemistry, but also in biochemistry and other areas, is investigated from a new perspective. Nuclear electronic orbital methods, which explicitly account for the quantum character of selected protons, are applied. The resulting orbital energies of the proton wavefunction are interpreted and related to enthalpies of deprotonation and acid strength in analogy to the Koopmans' theorem for electrons. For a set of organic acids, we observe a correlation which indicates the validity of such a NEO-Koopmans' approach and opens up new opportunities for the computational investigation of more complex acidic systems.

3.
Phys Chem Chem Phys ; 19(42): 28963-28969, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29063089

ABSTRACT

The realization of buckled monolayer sheets of boron (i.e., borophene) and its other polymorphs has attracted significant interest in the field of two-dimensional systems. Motivated by borophene's tendency to donate electrons, we analyzed the interaction of single halogen atoms (F, Cl, Br, I) with borophene. The possible adsorption sites are tested and the top of the boron atom is found as the ground state configuration. The nature of bonding and strong chemical interaction is revealed by using projected density of states and charge difference analysis. The migration of single halogen atoms on the surface of borophene is analyzed and high diffusion barriers that decrease with atomic size are obtained. The metallicity of borophene is preserved upon adsorption but anisotropy in electrical conductivity is altered. The variation of adsorption and formation energy, interatomic distance, charge transfer, diffusion barriers, and bonding character with the type of halogen atom are explored and trends are revealed. Lastly, the adsorption of halogen molecules (F2, Cl2, Br2, I2), including the possibility of dissociation, is studied. The obtained results are not only substantial for fundamental understanding of halogenated derivatives of borophene, but also are useful for near future technological applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...