Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e30898, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803919

ABSTRACT

Background: The initiator of cytokine storm in Coronavirus disease (COVID-19) is still unknown. We recently suggested a complex interaction of matrix metalloproteinases (MMPs), Fas ligand (FasL), and viral entry factors could be responsible for the cytokine outrage In COVID-19. We explored the molecular dynamics of FasL/MMP7-9 in COVID-19 conditions in silico and provide neuroimmune insights for future. Methods: We enrolled and analyzed a clinical cohort of COVID-19 patients, and recorded their blood Na + levels and temperature at admission. A blood-like molecular dynamics simulation (MDS) box was then built. Four conditions were studied; MMP7/FasL (healthy), MMP7/FasL (COVID-19), MMP9-FasL (healthy), and MMP9/FasL (COVID-19). MDS was performed by GROningen MAchine for Chemical Simulation (GROMACS). We analyzed bonds, short-range energies, and free binding energies to draw conclusions on the interaction of MMP7/MMP9 and FasL to gain insights into COVID-19 immunopathology. Genevestigator was used study RNA-seq/microarray expression data of MMPs in the cells of immune and nervous systems. Finally, epitopes of MMP/FasL complexes were identified as drug targets by machine learning (ML) tools. Results: MMP7-FasL (Healthy), MMP7-FasL (COVID-19), MMP9-FasL (Healthy), and MMP9-FasL (COVID-19) systems showed 0, 1, 4, and 2 salt bridges, indicating MMP9 had more salt bridges. Moreover, in both COVID-19 and normal conditions, the number of interacting residues and surface area was higher for MMP9 compared to MMP7 group. The COVID-19 MMP9-FasL group had more H-bonds compared to MMP7-FasL group (12 vs. 7). 15 epitopes for FasL-MMP9 and 10 epitopes for FasL-MMP7 were detected. Extended MD simulation for 100 ns confirmed stronger binding of MMP9 based on Molecular Mechanics Generalized Borne Surface analysis (MM-GBSA) and Coul and Leonard-Jones (LJ) short-range energies. Conclusions: MMP9 interacts stronger than MMP7 with FasL, however, both molecules maintained strong interaction through the MDS. We suggested epitopes for MMP-FasL complexes as valuable therapeutic targets in COVID-19. These data could be utilized in future immune drug and protein design and repurposing efforts.

2.
Biology (Basel) ; 12(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36979166

ABSTRACT

Diffusion tensor imaging (DTI) is gaining traction in neuroscience research as a tool for evaluating neural fibers. The technique can be used to assess white matter (WM) microstructure in neurodegenerative disorders, including Parkinson disease (PD). There is evidence that the uncinate fasciculus and the cingulum bundle are involved in the pathogenesis of PD. These fasciculus and bundle alterations correlate with the symptoms and stages of PD. PRISMA 2022 was used to search PubMed and Scopus for relevant articles. Our search revealed 759 articles. Following screening of titles and abstracts, a full-text review, and implementing the inclusion criteria, 62 papers were selected for synthesis. According to the review of selected studies, WM integrity in the uncinate fasciculus and cingulum bundles can vary according to symptoms and stages of Parkinson disease. This article provides structural insight into the heterogeneous PD subtypes according to their cingulate bundle and uncinate fasciculus changes. It also examines if there is any correlation between these brain structures' structural changes with cognitive impairment or depression scales like Geriatric Depression Scale-Short (GDS). The results showed significantly lower fractional anisotropy values in the cingulum bundle compared to healthy controls as well as significant correlations between FA and GDS scores for both left and right uncinate fasciculus regions suggesting that structural damage from disease progression may be linked to cognitive impairments seen in advanced PD patients. This review help in developing more targeted treatments for different types of Parkinson's disease, as well as providing a better understanding of how cognitive impairments may be related to these structural changes. Additionally, using DTI scans can provide clinicians with valuable information about white matter tracts which is useful for diagnosing and monitoring disease progression over time.

SELECTION OF CITATIONS
SEARCH DETAIL
...