Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803443

ABSTRACT

Interactions between well-mixed fine powders of As2O3, P2O5, MoO3, WO3 and Nb2O5 at different stoichiometry in quartz ampoules under vacuum at ~1000 °C in the presence of metallic molybdenum (or niobium), over several weeks, led to shiny dichroic crystalline materials being formed in cooler parts of the reaction vessel. An addition of small quantities of metals-Mo or Nb-was made with the aim of partially reducing their highly oxidized Mo(VI), W(VI) or Nb(V) species to corresponding Mo(V), W(V) and Nb(IV) centers, in order to form mixed valence solids. Sublimed crystals of four new compounds were investigated using a variety of techniques, with prime emphasis on the X-ray analysis, followed by spectroscopy (diffusion reflectance, IR, Raman and EPR), second harmonic generation (SHG), thermal analysis under N2 and air atmosphere, and single crystals electrical conductivity studies. The results evidenced the formation of new complex solids of previously unknown compositions and structures. Three out of four compounds crystallized in non-centrosymmetric space groups and represent layered 2D polymeric puckered structures that being stacked on each other form 3D lattices. All new solids exhibit strong second-harmonic-generation (SHG effect; based on YAG 1064 nm tests with detection of 532 nm photons), and a rare photosalient effect when crystals physically move in the laser beam. Single crystals' electrical conductivity of the four new synthesized compounds was measured, and the results showed their semiconductor behavior. Values of band gaps of these new solids were determined using diffusion reflectance spectroscopy in the visible region. Aspects of new solids' practical usefulness are discussed.


Subject(s)
Molybdenum/chemistry , Niobium/chemistry , Arsenic/chemistry , Crystallography, X-Ray , Heterocyclic Compounds , Models, Molecular , Polymers/chemistry , Spectrum Analysis , Tungsten/chemistry
2.
J Chem Phys ; 147(8): 084703, 2017 Aug 28.
Article in English | MEDLINE | ID: mdl-28863534

ABSTRACT

Enhancing Raman signatures of molecules by self-assembled metal nanoparticles, nanolithography patterning, or by designing plasmonic nanostructures is widely used for detection of low abundance biological systems. Self-assembled peptide nanostructures provide a natural template for tethering Au and Ag nanoparticles due to its fractal surface. Here, we show the use of L,L-diphenylalanine micro-nanostructures (FF-MNSs) for the organization of Ag and Au nanoparticles (Nps) and its potential as surface-enhanced Raman scattering (SERS)-active substrates. The FF-MNSs undergo an irreversible phase transition from hexagonally packed (hex) micro-nanotubes to an orthorhombic (ort) structure at ∼150 °C. The metal Nps form chains on hex FF-MNSs as inferred from transmission electron microscopy images and a uniform non-aggregated distribution in the ort phase. The high luminescence from the ort FF-MNS phase precludes SERS measurements with AgNps. The calculated Raman spectra using density-functional theory shows a higher intensity from rhodamine 6G (R6G) molecule in the presence of an Ag atom bound to ort FF compared with hex FF. The SERS spectra obtained from R6G bound to FF-MNSs with AuNps clearly show a higher enhancement for the ort phase compared with hex FF, corroborating our theoretical calculations. Our results indicate that FF-MNSs both in the hex and ort phases can be used as substrates for the SERS analysis with different metal nanoparticles, opening up a novel class of optically active bio-based substrates.

3.
Phys Chem Chem Phys ; 19(4): 3084-3093, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28079210

ABSTRACT

Self-assembled l,l-diphenylalanine (FF) peptide micro/nanotubes represent a class of biomimetic materials with a non-centrosymmetric crystal structure and strong piezoelectricity. The peptide nanotubes synthesized by a liquid phase method yield tube lengths in the hundreds of micron range, inner diameters in the few hundred nanometer range, and outer diameters in the 5-15 µm range. Second harmonic generation (SHG) polarimetry from individual self-assembled FF nanotubes is used to obtain the nonlinear (NLO) optical coefficients as a function of the tube diameter and thermal treatment. The ratio of the shear to the longitudinal component (d15/d33) of the NLO coefficient increases with the diameter of the tubes. One of the transverse components of the nonlinear coefficient is found to be negative, and its magnitude with respect to the longitudinal component increases with the tube diameter. Thermal treatment of individual FF tubes has a similar effect upon increasing the diameter of the tubes in SHG polarimetry. Concurrent Raman scattering measurements from individual FF tubes show a distinct change in the low frequency (100 cm-1) region with the diameter of the tubes reflecting subtle effects of water.


Subject(s)
Biomimetic Materials/chemistry , Nanotubes, Peptide/chemistry , Hot Temperature , Spectrum Analysis, Raman , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...