Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 345: 140494, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863210

ABSTRACT

Nitrogen (N) removal from wastewater is essential, but it a process that demands a substantial amount of energy. Therefore, there is an urgent need to develop treatment processes that can conserve and use energy effectively. This study investigated the potential of a single chamber bio-electrochemical system (BES) for ammonium (NH4+) removal. Various NH4+:NO2- ratios (1:1, 1:0.5, and 1:0) were tested at an applied potential of 0.4 V vs. Ag/AgCl. Potential in the reactors (R-1, R-2, and R-3) significantly improved NH4+ removal efficiencies. Specifically, R-1, R-2, and R-3 exhibited removal efficiencies of 68.12%, 64.22%, and 57.86%, respectively. NH4+ oxidation in R-3 involved using a carbon brush electrode as an electron acceptor. Significant electric charge generation was observed in all reactors (R-1, R-2, and R-3) during NH4+ removal. Particularly, the use of a carbon brush as an electron acceptor in R-3 resulted in higher electric charge generation compared to those in R-1 and R-2, where NO2- served as an electron acceptor. Upon NH4+ removal and concurrent electric charge generation, nitrate (NO3-) accumulation was observed in reactors with applied potential (R-1, R-2, and R-3), demonstrating greater accumulation compared to reactors without potential (R-7, R-8, and R-9). The mechanism involves ammonium oxidizing bacteria (AOB) oxidizing NH4+ to NO2-, which is then further oxidized by nitrite-oxidizing bacteria (NOB) to NO3-. ANAMMOX bacteria could directly produce N2 from NH4+ and NO2- or NH4+ could be oxidized to N2 through extracellular electron transfer (EET). A carbon brush electron acceptor reduces NO2- requirement by 1.65 g while enhancing NH4+ oxidation efficiency. This study demonstrates the potential of mixed culture ANAMMOX granules for efficient NO2-free NH4+ removal.


Subject(s)
Ammonium Compounds , Nitrites , Anaerobiosis , Anaerobic Ammonia Oxidation , Nitrogen Dioxide , Oxidation-Reduction , Bacteria , Oxidants , Carbon , Bioreactors/microbiology , Nitrogen , Denitrification
2.
Chemosphere ; 339: 139776, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567277

ABSTRACT

Biological nitrogen removal (BNR) is essential for the treatment of nitrogen-containing wastewater. However, the requirement for aeration and the addition of external carbon sources, resulting in greenhouse gas emissions and additional costs, are disadvantages of the traditional BNR process. Alternative technologies have been devised to overcome these drawbacks. Bioelectrochemical nitrogen removal (BENR) has been proposed for efficient nitrogen removal, demonstrating flexibility and versatility. BENR can be performed by combining nitrification, denitrification, anaerobic ammonium oxidation (ANAMMOX), or organic carbon oxidation. Bioelectrochemical-ANAMMOX (BE-ANAMMOX) is the most promising method for nitrogen removal, as it can directly convert NH4+ to N2 and H2 in one step when the electrode is arranged as an electron acceptor. High-value-added hydrogen can potentially be recovered with efficient nitrogen removal using this concept, maximizing the benefits of BENR. Using alternative electron acceptors, such as electrodes and metal ions, for complete total nitrogen removal is a promising technology to substitute NO2- production from NH4+ oxidation by aeration. However, the requirement of electron donors for NO3- reduction, low NH4+ removal efficiency, and low competitiveness of exoelectrogenic bacteria still remain the main obstacles. The future direction for successful BENR should aim to achieve complete anaerobic NH4+ oxidation without any electron acceptor and to maximize selectivity in H2 production. Therefore, the bioelectrochemical pathways and balances between efficient nitrogen removal and high-value-added chemical production should be further studied for carbon and energy neutralities.


Subject(s)
Ammonium Compounds , Denitrification , Nitrogen/metabolism , Bioreactors/microbiology , Anaerobiosis , Oxidation-Reduction , Oxidants , Carbon , Ammonium Compounds/metabolism , Sewage/microbiology
3.
Bioresour Technol ; 382: 129208, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37217150

ABSTRACT

Anaerobic co-digestion of food waste and algae was assessed to offset the drawbacks of anaerobic mono-digestion of each substrate. Batch test results indicated that a food waste and algae mixture ratio of 8:2 facilitated the highest CH4 yield (334 mL CH4/g CODInput). This ratio was applied to the anaerobic co-digestion reactor, resulting in a CH4 yield that was twice that of the anaerobic mono-digestion reactors, thereby facilitating high operational stability. In contrast to the anaerobic mono-digestion, anaerobic co-digestion resulted in stable CH4 production by overcoming volatile fatty acid accumulation and a decreased pH, even under a high organic loading rate (3 kg COD/m3∙d). Furthermore, a comparative metagenomic analysis revealed that the abundance of volatile fatty acid-oxidizing bacteria and hydrogenotrophic and methylotrophic methanogens was significantly increased in the anaerobic co-digestion reactor. These findings indicate that the anaerobic co-digestion of food waste and algae significantly improves CH4 production and process stability.


Subject(s)
Food , Refuse Disposal , Anaerobiosis , Biofuels/analysis , Refuse Disposal/methods , Sewage/microbiology , Bioreactors/microbiology , Methane , Fatty Acids, Volatile
4.
J Environ Manage ; 328: 116927, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36473349

ABSTRACT

Despite a quick shift of global goals toward carbon-neutral infrastructure, activated sludge based conventional systems inhibit the Green New Deal. Here, a municipal wastewater treatment plant (MWWTP) for carbon neutrality and energy sustainability is suggested and discussed based on realizable technical aspects. Organics have been recovered using variously enhanced primary treatment techniques, thereby reducing oxygen demand for the oxidation of organics and maximizing biogas production in biological processes. Meanwhile, ammonium in organic-separated wastewater is bio-electrochemically oxidized to N2 and reduced to H2 under completely anaerobic conditions, resulting in the minimization of energy requirements and waste sludge production, which are the main problems in activated sludge based conventional processes. The anaerobic digestion process converts concentrated primary sludge to biomethane, and H2 gas recovered from nitrogen upgrades the biomethane quality by reducing carbon dioxide in biogas. Based on these results, MWWTPs can be simplified and improved with high process and energy efficiencies.


Subject(s)
Sewage , Water Purification , Sewage/chemistry , Waste Disposal, Fluid/methods , Biofuels/analysis , Wastewater , Bioreactors , Anaerobiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...