Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Spinal Disord ; 13(3): 225-9, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10872760

ABSTRACT

Near-real-time frameless stereotaxy registering intraoperative anatomy to a preoperative three-dimensional computer model has been developed for use with in vivo pedicle screw placement. Eight patients underwent thoracolumbar and lumbar spine stabilization surgery using this new technology, and 32 pedicle screws were placed. Three additional patients had 12 pedicle screws removed during revision surgery, and they allowed the authors to estimate the accuracy of this navigational system. Accuracy was determined by comparing pedicle screw position on postoperative computed tomographs for the first eight patients and on preoperative computed tomographs for the latter three patients, with the intraoperative computer trajectory data gathered during operation. In the group of eight patients, all screws were intrapedicular. In evaluating all 11 patients, the overall accuracy was +/- 2 mm, but the greatest error of 5.4 mm was noted in the sagittal plane measurement. During the development phase of this technology, time constraints prolong surgery, but this may be addressed once the tool's accuracy has been confirmed and intraoperative radiographic confirmation becomes unnecessary. In vivo real-time frameless stereotaxy for pedicle screw placement offers promise for the future. Refinements are needed to improve accuracy and address time constraints.


Subject(s)
Bone Screws , Image Processing, Computer-Assisted/methods , Spinal Fusion , Stereotaxic Techniques/standards , User-Computer Interface , Humans , Treatment Outcome
2.
Spine (Phila Pa 1976) ; 22(10): 1160-4, 1997 May 15.
Article in English | MEDLINE | ID: mdl-9160477

ABSTRACT

STUDY DESIGN: Frameless stereotaxy with doppler ultrasound and three dimensional computer model registration is assessed in vitro for pedicle screw placement. OBJECTIVE: To identify feasibility of pedicle screw navigation and placement using this technology. SUMMARY OF BACKGROUND DATA: Inaccurate pedicle screw placement can lead to neurovascular injury or suboptimal fixation. Present techniques in pedicle screw placement involve only confirmation of hole orientation. METHOD: Forty-four pedicle screws were placed in lumbosacral models and cadaver specimens. Accuracy was assessed with a computed tomography scan and vertebral cross sectioning. RESULTS: All screws were intrapedicular. Accuracy of anterior cortical fixation was 1.5 mm, with a range of 2.5 mm. CONCLUSION: In vitro frameless stereotaxy is accurate for pedicle screw placement. This technology adds a component of navigation to pedicle screw placement.


Subject(s)
Bone Screws , Lumbar Vertebrae/surgery , Sacrum/surgery , Stereotaxic Techniques , Cadaver , Computer Simulation , Feasibility Studies , Humans , Image Processing, Computer-Assisted , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...