Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899354

ABSTRACT

Single-crystal-to-single-crystal (SCSC) transformations provide more avenues for phase transitions, which have piqued great interest in crystal engineering. In this work, a 3D Co(II)-based coordination polymer (CP), {Co2(OH2)8(btec)}·4H2O (1), (where (btec)4- = 1,2,4,5-benzenetetracarboxylate) undergoes SCSC transition upon heating at 180 °C to afford an anhydrous phase [Co2(btec)] (1'). Room-temperature water-vapour induced semi-reversible SCSC transformation of 1' involves condensation of two water molecules coordinating to the metal cluster, yielding a new framework [Co2(OH2)2(btec)] (2). These SCSC transitions were accomplished through a sequential bond breaking and new bond formation process which was accompanied by colour changes from orange (1) → violet (1') → pink (2). All materials were structurally elucidated by single-crystal X-ray diffraction (SCXRD) and further established by various analytical techniques. According to SCXRD data, all the frameworks possess octahedral geometries around the cobalt(II) sphere. SCXRD studies further revealed that 1 is a polymeric architecture with a binodal 4-c sql topology while 1' and 2 possess (3,6)-c kgd and (4,6)-c scu 3D nets, respectively. By virtue of multitopicity exhibited by the tetracarboxylate, the coordination number of the linker around the Co(II) sphere increased from four (in 1) to eight (in 1') and then decreased to six (in 2). Most interestingly, permanent porosity could be observed for the dihydrate 2, originated from potential void space as substantiated by dinitrogen (N2) sorption isotherm. These porous frameworks were active catalysts for the aerobic epoxidation of the model substrate cyclohexene using molecular oxygen (O2) as the final oxidant in the presence of the sacrificial i-butyraldehyde (IBA) reductant. For using the dihydrous phase 2, cyclohexene and various other olefins were catalytically oxidised to their corresponding epoxides with up to 38.5% conversion and 99.0% selectivity. The catalyst 2 can be expediently recycled in four runs without significant loss of activity. This research demonstrates that a little innovation in the active-site-engineered organic-inorganic hybrid materials can significantly enhance the catalytic performance and selectivity of coordination polymer-derived heterogeneous catalysts.

2.
ACS Omega ; 9(7): 7511-7528, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405543

ABSTRACT

Herein, we present a copper(II) metal-organic framework, [Cu2(btec)(OH2)4]·2H2O (1) [(btec)4- = 1,2,4,5-benzenetetracarboxylate], that undergoes single-crystal-to-single-crystal transformations into two anhydrous phases 2' and 2″ with the chemical formula [Cu2(btec)], triggered by two-step dehydration at 403 and 433 K, respectively. After immersion in water for 3 days at room temperature, 2' transformed into [Cu2(btec)(OH2)] (3), while both 2' and 2″ took 1 week to revert to 1. Dynamic vapor sorption studies validated water-induced reversible structural transformations at 70% relative humidity (RH). According to single-crystal X-ray diffraction (SC-XRD), the local coordination geometry of the Cu2+ ion in 2' changed from a saturated octahedron to a coordinatively unsaturated square-based pyramid in 3, manifested by changes in color and dimensionality. From a topological point of view, all of the scaffolds show a binodal (3,6)-connected kgd topology with the point symbol {43}2{46}. In addition, the materials were thoroughly characterized using routine spectroscopic data and various analytical techniques. The catalytic activity of the microporous materials in the liquid-phase oxidation of styrene in acetonitrile, using 30% (wt) H2O2 as the oxidant, was investigated. The excellent performance of the monohydrous phase 3 was shown to be superior to the pristine framework and the anhydrous counterparts, as evidenced by a good turnover number (TON) and turnover frequency (TOF) = 82.6 and 21.0 h-1, respectively. Within 4 h, the substrates were catalytically oxidized to the desired products with up to 67% conversion and 100% benzaldehyde selectivity. It is worth noting that the accessible active metal sites and higher surface area enhanced the catalytic properties of 3. Furthermore, the maintenance of catalytic efficiency over five cycles and reusability are illustrated and discussed in terms of the structural differences of the microporous frameworks. Thus, a preliminary reaction mechanism for the selective oxidation of styrene is proposed. This study not only provides a fascinating example of MOF chromism achieved by thermal activation and rehydration but also sheds some light on the relationship between pore-surface- or metal-engineered sites in MOFs and their heterogeneous catalytic performances.

3.
ChemMedChem ; 18(6): e202200572, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36617507

ABSTRACT

Compounds containing arylpyrrole-, 1,2,4-triazole- and hydrazone structural frameworks have been widely studied and demonstrated to exhibit a wide range of pharmacological properties. Herein, an exploratory series of new 1,2,4-triazole derivatives designed by amalgamation of arylpyrrole and 1,2,4-triazole structural units via a hydrazone linkage is reported. The synthesised compounds were tested in vitro for their potential activity against Mycobacterium tuberculosis (MTB) H37 Rv strain. The most promising compound 13 - the derivative without the benzene ring appended to the pyrrole unit displayed acceptable activity (MIC90 =3.99 µM) against MTB H37 Rv, while other compounds from the series exhibited modest to weak antimycobacterial activity with MIC90 values in the range between 7.0 and >125 µM. Furthermore, in silico results, predicated using the SwissADME web tool, show that the prepared compounds display desirable ADME profile with parameters within acceptable range.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Microbial Sensitivity Tests , Structure-Activity Relationship
4.
Arch Pharm (Weinheim) ; 356(3): e2200409, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36446720

ABSTRACT

Herein we report the synthesis of 21 novel small molecules inspired by metronidazole and Schiff base compounds. The compounds were evaluated against Trichomonas vaginalis and cross-screened against other pathogenic protozoans of clinical relevance. Most of these compounds were potent against T. vaginalis, exhibiting IC50 values < 5 µM. Compound 20, the most active compound against T. vaginalis, exhibited an IC50 value of 3.4 µM. A few compounds also exhibited activity against Plasmodium falciparum and Trypanosomal brucei brucei, with compound 6 exhibiting an IC50 value of 0.7 µM against P. falciparum and compound 22 exhibiting an IC50 value of 1.4 µM against T.b. brucei. Compound 22 is a broad-spectrum antiprotozoal agent, showing activities against all three pathogenic protozoans under investigation.


Subject(s)
Antiprotozoal Agents , Malaria, Falciparum , Trichomonas vaginalis , Humans , Metronidazole/pharmacology , Schiff Bases/pharmacology , Structure-Activity Relationship , Antiprotozoal Agents/pharmacology
5.
Molecules ; 26(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801371

ABSTRACT

A tailored series of coumarin-based ferrocenyl 1,3-oxazine hybrid compounds was synthesized and investigated for potential antiparasitic activity, drawing inspiration from the established biological efficacy of the constituent chemical motifs. The structural identity of the synthesized compounds was confirmed by common spectroscopic techniques: NMR, HRMS and IR. Biological evaluation studies reveal that the compounds exhibit higher in vitro antiparasitic potency against the chemosensitive malarial strain (3D7 P. falciparum) over the investigated trypanosomiasis causal agent (T. b. brucei 427) with mostly single digit micromolar IC50 values. When read in tandem with the biological performance of previously reported structurally similar non-coumarin, phenyl derivatives (i.e., ferrocenyl 1,3-benzoxazines and α-aminocresols), structure-activity relationship analyses suggest that the presence of the coumarin nucleus is tolerated for biological activity though this may lead to reduced efficacy. Preliminary mechanistic studies with the most promising compound (11b) support hemozoin inhibition and DNA interaction as likely mechanistic modalities by which this class of compounds may act to produce plasmocidal and antitrypanosomal effects.


Subject(s)
Antimalarials/pharmacology , Antiprotozoal Agents/pharmacology , Coumarins/chemistry , Ferrous Compounds/chemistry , Oxazines/chemistry , Plasmodium falciparum/drug effects , Trypanosoma brucei brucei/drug effects , Antimalarials/chemistry , Antiprotozoal Agents/chemistry , Cell Proliferation , Cell Survival , Female , Humans , In Vitro Techniques , Molecular Structure , Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy , Tumor Cells, Cultured
6.
Arch Pharm (Weinheim) ; 354(7): e2000331, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33710656

ABSTRACT

A rationally designed series of 2-(N-cyclicamino)quinolines coupled with methyl (E)-3-(2/3/4-aminophenyl)acrylates was synthesized and subjected to in vitro screening bioassays for potential antiplasmodial and antitrypanosomal activities against a chloroquine-sensitive (3D7) strain of Plasmodium falciparum and nagana Trypanosoma brucei brucei 427, respectively. Substituent effects on activity were evaluated; meta-acrylate 24 and the ortho-acrylate 29 exhibited the highest antiplasmodial (IC50 = 1.4 µM) and antitrypanosomal (IC50 = 10.4 µM) activities, respectively. The activity against HeLa cells showed that the synthesized analogs are not cytotoxic at the maximum tested concentration. The ADME (absorption, distribution, metabolism, and excretion) drug-like properties of the synthesized compounds were predicted through the SwissADME software.


Subject(s)
Acrylates/pharmacology , Antimalarials/pharmacology , Quinolines/pharmacology , Trypanocidal Agents/pharmacology , Acrylates/chemical synthesis , Acrylates/chemistry , Antimalarials/chemical synthesis , Antimalarials/chemistry , HeLa Cells , Humans , Inhibitory Concentration 50 , Plasmodium falciparum/drug effects , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects
7.
Molecules ; 26(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672753

ABSTRACT

The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24-31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4-20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiprotozoal Agents/pharmacology , Quinolones/pharmacology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Quinolones/chemical synthesis , Quinolones/chemistry , Staphylococcus aureus/drug effects , Trypanosoma brucei brucei/drug effects
8.
Bioorg Med Chem Lett ; 38: 127855, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33609655

ABSTRACT

Several classes of antimalarial drugs are currently available, although issues of toxicity and the emergence of drug resistant malaria parasites have reduced their overall therapeutic efficiency. Quinoline based antiplasmodial drugs have unequivocally been long-established and continue to inspire the design of new antimalarial agents. Herein, a series of mono- and bisquinoline methanamine derivatives were synthesised through sequential steps; Vilsmeier-Haack, reductive amination, and nucleophilic substitution, and obtained in low to excellent yields. The resulting compounds were investigated for in vitro antiplasmodial activity against the 3D7 chloroquine-sensitive strain of Plasmodium falciparum, and compounds 40 and 59 emerged as the most promising with IC50 values of 0.23 and 0.93 µM, respectively. The most promising compounds were also evaluated in silico by molecular docking protocols for binding affinity to the {001} fast-growing face of a hemozoin crystal model.


Subject(s)
Antimalarials/pharmacology , Drug Design , Methylamines/pharmacology , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Methylamines/chemical synthesis , Methylamines/chemistry , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
9.
Molecules ; 25(7)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260364

ABSTRACT

With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.


Subject(s)
Chalcones/chemical synthesis , Pyrroles/chemical synthesis , Trypanocidal Agents/chemical synthesis , Trypanosoma brucei brucei/drug effects , Cell Proliferation , Chalcones/chemistry , Chalcones/pharmacology , Crystallography, X-Ray , HeLa Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
10.
Chembiochem ; 21(18): 2643-2658, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32307798

ABSTRACT

The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , DNA, Fungal/drug effects , Hemeproteins/antagonists & inhibitors , Organometallic Compounds/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cresols/chemistry , Cresols/pharmacology , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Hemeproteins/metabolism , Humans , Metallocenes/chemistry , Metallocenes/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry
11.
Acta Chim Slov ; 67(3): 764-777, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33533432

ABSTRACT

Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis. 1-(3-Bromobenzoyl)-3-[2-([(3-bromophenyl)formami-do]methanethioylamino)phenyl]thiourea (10) and 3-benzoyl-1[(phenylformamido)methanethioyl]aminothiourea (12) gave a percentage viability of 17.9 ± 5.6% and 11.2 ± 0.9% against Trypanosoma brucei. Single crystal X-ray dif-fraction analysis of 1-benzoyl-3-(5-methyl-2-[(phenylformamido)methanethioyl]aminophenyl)thiourea (1), 3-ben-zoyl-1-(2-[(phenylformamido)methanethioyl]aminoethyl)thiourea (11), 3-benzoyl-1-[(phenylformamido)methan-ethioyl]aminothiourea (12) and 3-benzoyl-1-(4-[(phenylformamido)methanethioyl]aminobutyl)thiourea (14) have been presented. 1-(3-Bromobenzoyl)-3-[2-([(3-bromophenyl)formamido]methanethioylamino)phenyl]thiourea (10) gave a percentage inhibition of 97.03 ± 0.37% against HIV-1 protease enzyme at a concentration of 100 ?M.

12.
Eur J Med Chem ; 187: 111924, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31855792

ABSTRACT

Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis. The resultant ferrocenyl 1,3-benzoxazine compounds displayed high potency and selectivity against the investigated diseases, with IC50 values in the low and sub-micromolar range against both chloroquine-sensitive (3D7) and resistant (Dd2) strains of the Plasmodium falciparum parasite. On the other hand, antitrypanosomal (Trypanosoma brucei brucei) potencies were observed between 0.15 and 38.6 µM. The majority of the compounds were not active against breast cancer cells (HCC70), however, for the toxic compounds, IC50 values ranged from 11.0 to 30.5 µM. Preliminary structure-activity relationships revealed the basic oxazine sub-ring and lipophilic benzene substituents to be conducive for biological efficacy of the ferrocenyl 1,3-benzoxazines reported in the study. DNA interaction studies performed on the most promising compound 4c suggested that DNA damage may be one possible mode of action of this class of compounds.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Benzoxazines/pharmacology , Drug Repositioning , Plasmodium falciparum/drug effects , Polymers/pharmacology , Trypanosoma brucei brucei/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Dynamics Simulation , Molecular Structure , Parasitic Sensitivity Tests , Polymers/chemical synthesis , Polymers/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
13.
Molecules ; 24(9)2019 May 04.
Article in English | MEDLINE | ID: mdl-31060249

ABSTRACT

Co-infection of malaria and tuberculosis, although not thoroughly investigated, has been noted. With the increasing prevalence of tuberculosis in the African region, wherein malaria is endemic, it is intuitive to suggest that the probability of co-infection with these diseases is likely to increase. To avoid the issue of drug-drug interactions when managing co-infections, it is imperative to investigate new molecules with dual activities against the causal agents of these diseases. To this effect, a small library of quinolone-thiosemicarbazones was synthesised and evaluated in vitro against Plasmodium falciparum and Mycobacterium tuberculosis, the causal agents of malaria and tuberculosis, respectively. The compounds were also evaluated against HeLa cells for overt cytotoxicity. Most compounds in this series exhibited activities against both organisms, with compound 10, emerging as the hit; with an MIC90 of 2 µM against H37Rv strain of M. tuberculosis and an IC50 of 1 µM against the 3D7 strain of P. falciparum. This study highlights quinolone-thiosemicarabazones as a class of compounds that can be exploited further in search of novel, safe agents with potent activities against both the causal agents of malaria and tuberculosis.


Subject(s)
Anti-Infective Agents/chemical synthesis , Mycobacterium tuberculosis/drug effects , Plasmodium falciparum/drug effects , Quinolones/chemistry , Small Molecule Libraries/chemical synthesis , Thiosemicarbazones/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Candy , Drug Interactions , HeLa Cells , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/drug therapy , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tuberculosis
14.
Medicina (Kaunas) ; 55(5)2019 May 24.
Article in English | MEDLINE | ID: mdl-31137665

ABSTRACT

Background and objectives: Sleeping sickness and malaria alike are insect-borne protozoan diseases that share overlapping endemic areas in sub-Saharan Africa. The causative agent for malaria has developed resistance against all currently deployed anti-malarial agents. In the case of sleeping sickness, the currently deployed therapeutic options are limited in efficacy and activity spectra, and there are very few drug candidates in the development pipeline. Thus, there is a need to search for new drug molecules with a novel mode of actions. Materials and Methods: In the current study, an in vitro screening of a library of tetralone derivatives and related benzocycloalkanones was effected against T. b. brucei and P. falciparum. Results: Several hits with low micromolar activity (0.4-8 µM) against T. b. brucei were identified. Conclusions: The identified hits have a low molecular weight (<280 Da), a low total polar surface area (<50 Ų), and a defined structure activity relationship, which all make them potential starting points for further hit optimization studies.


Subject(s)
Malaria/drug therapy , Tetralones/pharmacology , Trypanosomiasis, African/drug therapy , Humans , Malaria/physiopathology , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Tetralones/therapeutic use , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei gambiense/pathogenicity , Trypanosomiasis, African/physiopathology
15.
Medchemcomm ; 10(2): 326-331, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30881619

ABSTRACT

Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide-hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2-8 µM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 µM), 11 (MIC90; 0.2 µM), 12 (MIC90; 0.8 µM) and compound 15 (MIC90; 0.8 µM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions -1 and -3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.

16.
J Biol Inorg Chem ; 24(2): 139-149, 2019 03.
Article in English | MEDLINE | ID: mdl-30542925

ABSTRACT

A series of tailored novobiocin-ferrocene conjugates was prepared in moderate yields and investigated for in vitro anticancer and antiplasmodial activity against the MDA-MB-231 breast cancer line and Plasmodium falciparum 3D7 strain, respectively. While the target compounds displayed moderate anticancer activity against the breast cancer cell line with IC50 values in the mid-micromolar range, compounds 10a-c displayed promising antiplasmodial activity as low as 0.889 µM. Furthermore, the most promising compounds were tested for inhibitory effects against a postulated target, heat shock protein 90 (Hsp90). A selection of tailored novobiocin derivatives bearing the organometallic ferrocene unit were synthesized and characterized by common spectroscopic techniques. The target compounds were investigated for in vitro anticancer and antimalarial activity against the MDA-MB-231 breast cancer cell line and Plasmodium falciparum 3D7 strain, respectively.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Ferrous Compounds/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Metallocenes/pharmacology , Novobiocin/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Metallocenes/chemistry , Molecular Structure , Novobiocin/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship
17.
J Med Chem ; 61(24): 11327-11340, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30457865

ABSTRACT

Society urgently needs new, effective medicines for the treatment of tuberculosis. To kick-start the required hit-to-lead campaigns, the libraries of pharmaceutical companies have recently been evaluated for starting points. The GlaxoSmithKline (GSK) library yielded many high-quality hits, and the associated data were placed in the public domain to stimulate engagement by the wider community. One such series, the spiro compounds, are described here. The compounds were explored by a combination of traditional in-house research and open source methods. The series benefits from a particularly simple structure and a short associated synthetic chemistry route. Many members of the series displayed striking potency and low toxicity, and highly promising in vivo activity in a mouse model was confirmed with one of the analogues. Ultimately the series was discontinued due to concerns over safety, but the associated data remain public domain, empowering others to resume the series if the perceived deficiencies can be overcome.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Tuberculosis/drug therapy , Administration, Intravenous , Administration, Oral , Animals , Antitubercular Agents/adverse effects , Biological Availability , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel/antagonists & inhibitors , Female , Heart/drug effects , Humans , Maximum Tolerated Dose , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Rabbits
18.
Molecules ; 23(8)2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30111695

ABSTRACT

Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 µM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to >125 µM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens.


Subject(s)
Amides/chemical synthesis , Anti-Infective Agents/chemical synthesis , Boron Compounds/chemical synthesis , Cinnamates/chemical synthesis , Amides/pharmacology , Animals , Anti-Infective Agents/pharmacology , Boron Compounds/pharmacology , Cell Survival/drug effects , Cinnamates/pharmacology , HeLa Cells , Humans , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship , Trichomonas vaginalis/drug effects , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/parasitology
19.
ChemMedChem ; 13(13): 1353-1362, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29756273

ABSTRACT

Despite major strides in reducing Plasmodium falciparum infections, this parasite still accounts for roughly half a million annual deaths. This problem is compounded by the decreased efficacy of artemisinin combination therapies. Therefore, the development and optimisation of novel antimalarial chemotypes is critical. In this study, we describe our strategic approach to optimise a class of previously reported antimalarials, resulting in the discovery of 1-(5-chloro-1H-indol-3-yl)-2-[(4-cyanophenyl)thio]ethanone (13) and 1-(5-chloro-1H-indol-3-yl)-2-[(4-nitrophenyl)thio]ethanone (14), whose activity was equipotent to that of chloroquine against the P. falciparum 3D7 strain. Furthermore, these compounds were found to be nontoxic to HeLa cells as well as being non-haemolytic to uninfected red blood cells. Intriguingly, several of our most promising compounds were found to be less active against the isogenic NF54 strain, highlighting possible issues with long-term dependability of malarial strains. Finally compound 14 displayed similar activity against both the NF54 and K1 strains, suggesting that it inhibits a pathway that is uncompromised by K1 resistance.


Subject(s)
Antimalarials/pharmacology , Ethers/pharmacology , Indoles/pharmacology , Sulfides/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antimalarials/toxicity , Erythrocytes/drug effects , Ethers/chemical synthesis , Ethers/chemistry , Ethers/toxicity , HeLa Cells , Hemolysis/drug effects , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/toxicity , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Structure-Activity Relationship , Sulfides/chemical synthesis , Sulfides/chemistry , Sulfides/toxicity
20.
Bioorg Chem ; 75: 310-316, 2017 12.
Article in English | MEDLINE | ID: mdl-29080495

ABSTRACT

A practicable six-step synthetic pathway has been developed to access a library of novel 3-[(N-cycloalkylbenzamido)methyl]-2-quinolones using Morita-Baylis-Hillman methodology. These compounds and their 3-[(N-cycloalkylamino)methyl]-2-quinolone precursors have been screened as potential HIV-1 integrase (IN) inhibitors. A concomitant survey of their activity against HIV-1 protease and reverse-transcriptase reveals selective inhibition of HIV-1 IN.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , HIV Integrase/chemistry , HIV-1/enzymology , Quinolones/chemistry , Cell Survival/drug effects , Enzyme Activation/drug effects , HEK293 Cells , HIV Integrase/metabolism , HIV Integrase Inhibitors/metabolism , HIV Integrase Inhibitors/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Humans , Quinolones/metabolism , Quinolones/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...