Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 380(2217): 20200321, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34974721

ABSTRACT

Structure formation during solidification of a Pd-Ni-Cu-P melt is studied. It is demonstrated that changes in the heat transfer conditions lead to a nonlinear change in the characteristics of the structure. The article presents the regimes of cooling the samples and the results of their structure and composition studies. It is found that a decrease in the cooling rate of the alloy leads to an increase in the size, proportion and composition of nanoinclusions in an amorphous matrix. X-ray diffraction method, electron probe microanalysis, transmission microscopy and scanning calorimetry are used for samples characterization. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.

2.
Philos Trans A Math Phys Eng Sci ; 377(2143): 20180205, 2019 Apr 22.
Article in English | MEDLINE | ID: mdl-30827218

ABSTRACT

Thermodynamic driving forces and growth rates in rapid solidification are analysed. Taking into account the relaxation time of the solute diffusion flux in the model equations, the present theory uses, in a first case, the deviation from local chemical equilibrium, and ergodicity breaking. The second case of ergodicity breaking may exist in crystal growth kinetics of rapidly solidifying glass-forming metals and alloys. In this case, a theoretical analysis of dendritic solidification is given for congruently melting alloys in which chemical segregation does not occur. Within this theory, a deviation from thermodynamic equilibrium is introduced for high undercoolings via gradient flow relaxation of the phase field. A comparison of the present derivations with previously verified theoretical predictions and experimental data is given. This article is part of the theme issue 'Heterogeneous materials: metastable and non- ergodic internal structures'.

SELECTION OF CITATIONS
SEARCH DETAIL
...