Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17362, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833347

ABSTRACT

Plain bearings, renowned for their versatility and simplicity, are extensively utilized in engineering design across various industries involving moving parts. Lubrication is vital to the functioning of these bearings, yet their usage is inhibited under dynamic load conditions, or at elevated or reduced temperatures due to this dependency on lubrication. This study introduces an innovative method to significantly mitigate friction and wear in plain bearings operating without lubrication. The plain bearings were constructed from steel-bronze pairs, where the steel shafts were alloyed with bismuth oxide via short-pulse laser treatment. MnO2 was utilized as a carrier to incorporate the bismuth oxide into the surface layers of the steel. Insights from transmission electron microscopy and X-ray photoelectron spectroscopy revealed a highly non-equilibrium state of matter, unattainable through conventional engineering methods. The tribological performance of the modified steel disks was assessed via a block-on-ring sliding test, demonstrating superior wear and friction performance without lubrication, as well as an ultra-low coefficient of friction. Remarkably, the modified friction pairs remained functional after 200 km of linear sliding at a load of 250 N (12.5 MPa) and a sliding speed of 9 m/s. To substantiate the technique's viability, we tested the performance of an internal combustion engine turbocharger fitted with a modified steel shaft. The turbocharger's performance validated the long-term effectiveness of the steel-bronze coupling operating without lubrication at 75,000 rpm. The simplicity and resilience of this technique for modifying steel-bronze pairs offer a ground-breaking and promising approach for a wide range of applications.

2.
Materials (Basel) ; 16(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570183

ABSTRACT

Equiatomic medium-entropy alloy (MEA) FeNiCr-B4C (0, 1, and 3 wt.% B4C) coatings were deposited onto an AISI 1040 steel substrate using pulsed laser cladding. Based on an SEM microstructural analysis, it was found that the cross-sections of all the obtained specimens were characterized by an average coating thickness of 400 ± 20 µm, a sufficiently narrow (100 ± 20 µm) "coating-substrate" transition zone, and the presence of a small number of defects, including cracks and pores. An XRD analysis showed that the formed coatings consisted of a single face-centered cubic (FCC) γ-phase and the space group Fm-3m, regardless of the B4C content. However, additional TEM analysis of the FeNiCr coating with 3 wt.% B4C revealed a two-phase FCC structure consisting of grains (FCC-1 phase, Fm-3m) up to 1 µm in size and banded interlayers (FCC-2 phase, Fm-3m) between the grains. The grains were clean with a low density of dislocations. Raman spectroscopy confirmed the presence of B4C carbides inside the FeNiCr (1 and 3 wt.% B4C) coatings, as evidenced by detected peaks corresponding to amorphous carbon and peaks indicating the stretching of C-B-C chains. The mechanical characterization of the FeNiCr-B4C coatings specified that additions of 1 and 3 wt.% B4C resulted in a notable increase in microhardness of 16% and 38%, respectively, with a slight decrease in ductility of 4% and 10%, respectively, compared to the B4C-free FeNiCr coating. Thus, the B4C addition can be considered a promising method for strengthening laser-cladded MEA FeNiCr-B4C coatings.

SELECTION OF CITATIONS
SEARCH DETAIL
...