Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 29(3): 035401, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-27845927

ABSTRACT

We have studied the phase equilibria of three ceramic quasibinary systems Ti1-x Zr x N, Ti1-x Hf x N and Zr1-x Hf x N (0 ⩽ x ⩽ 1) with density functional theory, cluster expansion and Monte Carlo simulations. We predict consolute temperatures (T C), at which miscibility gaps close, for Ti1-x Zr x N to be 1400 K, for Ti1-x Hf x N to be 700 K, and below 200 K for Zr1-x Hf x N. The asymmetry of the formation energy ΔE f(x) is greater for Ti1-x Hf x N than Ti1-x Zr x N, with less solubility on the smaller cation TiN-side, and similar asymmetries were predicted for the corresponding phase diagrams. We also analyzed different energetic contributions: ΔE f of the random solid solutions were decomposed into a volume change term, [Formula: see text], and a chemical exchange and relaxation term, [Formula: see text]. These two energies partially cancel one another. We conclude that [Formula: see text] influences the magnitude of T C and [Formula: see text] influences the asymmetry of ΔE f(x) and phase boundaries. We also conclude that the absence of experimentally observed phase separation in Ti1-x Zr x N and Ti1-x Hf x N is due to slow kinetics at low temperatures. In addition, elastic constants and mechanical properties of the random solid solutions were studied with the special quasirandom solution approach. Monotonic trends, in the composition dependence, of shear-related mechanical properties, such as Vickers hardness between 18 to 23 GPa, were predicted. Trends for Ti1-x Zr x N and Ti1-x Hf x N exhibit down-bowing (convexity). It shows that mixing nitrides of same group transition metals does not lead to hardness increase from an electronic origin, but through solution hardening mechanism. The mixed thin films show consistency and stability with little phase separation, making them desirable coating choices.

2.
J Phys Condens Matter ; 26(2): 025404, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24305607

ABSTRACT

We report systematic results from ab initio calculations with density functional theory on three cubic structures, zincblende (zb), rocksalt (rs) and cesium chloride (cc), of the ten 3d transition metal nitrides. We computed lattice constants, elastic constants, their derived moduli and ratios that characterize mechanical properties. Experimental measurements exist in the literature of lattice constants for rs-ScN, rs-TiN and rs-VN and of elastic constants for rs-TiN and rs-VN, all of which are in good agreement with our computational results. Similarly, computed Vickers hardness (HV) values for rs-TiN and rs-VN are consistent with earlier experimental results. Several trends were observed in our rich data set of 30 compounds. All nitrides, except for zb-CrN, rs-MnN, rs-FeN, cc-ScN, cc-CrN, cc-NiN and cc-ZnN, were found to be mechanically stable. A clear correlation in the atomic density with the bulk modulus (B) was observed with maximum values of B around FeN, MnN and CrN. The shear modulus, Young's modulus, HV and indicators of brittleness showed similar trends and all showed maxima for cc-VN. The calculated value of HV for cc-VN was about 30 GPa, while the next highest values were for rs-ScN and rs-TiN, about 24 GPa. A relation (H(V) is proportional to θ(D)(2)) between HV and Debye temperature (θD) was investigated and verified for each structure type. A tendency for anti-correlation of the elastic constant C44, which strongly influences stability and hardness, with the number of electronic states around the Fermi energy was observed.


Subject(s)
Cesium/chemistry , Chlorides/chemistry , Electrons , Mechanical Phenomena , Quantum Theory , Salts/chemistry , Zinc/chemistry , Elasticity , Temperature
3.
J Phys Condens Matter ; 25(7): 075401, 2013 Feb 20.
Article in English | MEDLINE | ID: mdl-23341436

ABSTRACT

We have studied the pressure-induced phase transitions from NaCl-type (B1) to CsCl-type (B2) structure in BaS, BaSe and BaTe by using ab initio density functional theory computations in the local density approximation. The Buerger and WTM mechanisms were explored by mapping the enthalpy contours in two- and four-dimensional configuration space for the two mechanisms, respectively. Transition pressures for BaS, BaSe and BaTe were determined to be 5.5 GPa, 4.9 GPa and 3.4 GPa, respectively. From these configuration space landscapes, a low enthalpy barrier path was constructed for the transitions to proceed at three different pressures. We obtained barriers of 0.18, 0.16 and 0.15 eV/pair (17.4, 15.4 and 14.5 kJ mol(-1)) for the Buerger mechanism and 0.13, 0.13 and 0.12 eV/pair (12.5, 12.5 and 11.6 kJ mol(-1)) for the WTM mechanism at the transition pressures for BaS, BaSe and BaTe, respectively, indicating that the WTM mechanism is slightly more favorable in these compounds. We describe the difference between the two mechanisms by differences in their symmetry and atomic coordination.


Subject(s)
Barium Compounds/chemistry , Cesium/chemistry , Chlorides/chemistry , Models, Chemical , Models, Molecular , Sodium Chloride/chemistry , Computer Simulation , Phase Transition , Pressure
4.
Nature ; 429(6987): 49-52, 2004 May 06.
Article in English | MEDLINE | ID: mdl-15129275

ABSTRACT

Dislocations are line defects that bound plastically deformed regions in crystalline solids. Dislocations terminating on the surface of materials can strongly influence nanostructural and interfacial stability, mechanical properties, chemical reactions, transport phenomena, and other surface processes. While most theoretical and experimental studies have focused on dislocation motion in bulk solids under applied stress and step formation due to dislocations at surfaces during crystal growth, very little is known about the effects of dislocations on surface dynamics and morphological evolution. Here we investigate the near-equilibrium dynamics of surface-terminated dislocations using low-energy electron microscopy. We observe, in real time, the thermally driven nucleation and shape-preserving growth of spiral steps rotating at constant temperature-dependent angular velocities around cores of dislocations terminating on the (111) surface of TiN in the absence of applied external stress or net mass change. We attribute this phenomenon to point-defect migration from the bulk to the surface along dislocation lines. Our results demonstrate that dislocation-mediated surface roughening can occur even in the absence of deposition or evaporation, and provide fundamental insights into mechanisms controlling nanostructural stability.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 2): 056110, 2003 May.
Article in English | MEDLINE | ID: mdl-12786223

ABSTRACT

We demonstrate that a particle driven by a set of spatially uncorrelated, independent colored noise forces in a bounded, multidimensional potential exhibits rotations that are independent of the initial conditions. We calculate the particle currents in terms of the noise statistics and the potential asymmetries by deriving an n-dimensional Fokker-Planck equation in the small correlation time limit. We analyze a variety of flow patterns for various potential structures, generating various combinations of laminar and rotational flows.

6.
Phys Rev Lett ; 89(17): 176102, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-12398688

ABSTRACT

In situ high-temperature (T(a)=1050-1250 K) scanning tunneling microscopy was used to determine the coarsening and decay kinetics of two-dimensional TiN adatom and vacancy islands on atomically smooth TiN(111) terraces. We report the first observation of an abrupt decrease in decay rates, irrespective of T(a), of adatom islands with areas less than a critical value of 1600 A(2). However, no decay rate transition was observed for vacancy islands. We attribute the size-dependent island decay behavior, which is consistent with detachment-limited kinetics, to anisotropic attachment and detachment barriers.

7.
Phys Rev Lett ; 88(14): 146101, 2002 Apr 08.
Article in English | MEDLINE | ID: mdl-11955162

ABSTRACT

In situ high-temperature (1165-1248 K) scanning tunneling microscopy was used to measure fluctuations around the equilibrium shape of two-dimensional vacancy islands on TiN(111) terraces. From the equilibrium shape, the ratio of the two <110> step energies was found to be 0.72 +/- 0.02. Combining this with the results of an exact approach for analysis of shape fluctuations, applicable to highly anisotropic islands, we obtain absolute values for step energies and step stiffnesses as a function of orientation.

SELECTION OF CITATIONS
SEARCH DETAIL
...