Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14238, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902389

ABSTRACT

Municipal solid waste compost, the circular economy's closed-loop product often contains excessive amounts of toxic heavy metals, leading to market rejection and disposal as waste material. To address this issue, the study develops a novel approach based on: (i) utilizing plant-based biodegradable chelating agent, L-glutamic acid, N,N-diacetic acid (GLDA) to remediate heavy metals from contaminated MSW compost, (ii) comparative assessment of GLDA removal efficiency at optimal conditions with conventional nonbiodegradable chelator EDTA, and (iii) enhanced pre- and post-leaching to evaluate the mobility, toxicity, and bioavailability of heavy metals. The impact of treatment variables, such as GLDA concentration, pH, and retention time, on the removal of heavy metals was investigated. The process was optimized using response surface methodology to achieve the highest removal effectiveness. The findings indicated that under optimal conditions (GLDA concentration of 150 mM, pH of 2.9, retention time for 120 min), the maximum removal efficiencies were as follows: Cd-90.32%, Cu-81.96%, Pb-91.62%, and Zn-80.34%. This process followed a pseudo-second-order kinetic equation. Following GLDA-assisted leaching, the geochemical fractions were studied and the distribution highlighted Cd, Cu, and Pb's potential remobilization in exchangeable fractions, while Zn displayed integration with the compost matrix. GLDA-assisted leaching and subsequent fractions illustrated transformation and stability. Therefore, this process could be a sustainable alternative for industrial applications (agricultural fertilizers and bioenergy) and social benefits (waste reduction, urban landscaping, and carbon sequestration) as it has controlled environmental footprints. Hence, the proposed remediation strategy, chemically assisted leaching, could be a practical option for extracting heavy metals from MSW compost, thereby boosting circular economy.

2.
Environ Sci Pollut Res Int ; 30(24): 65779-65800, 2023 May.
Article in English | MEDLINE | ID: mdl-37093381

ABSTRACT

Due to high metal toxicity, mixed municipal solid waste (MSW) compost is difficult to use. This study detected the presence of heavy metals (Cd, Cu, Pb, Ni, and Zn) in MSW compost through mineralogical analysis using X-ray diffraction (XRD) and performed topographical imaging and elemental mapping using a scanning electron microscope and energy dispersive X-ray analysis (SEM-EDX). Ethylenediaminetetraacetic acid (EDTA), a typical chelator, is tested to remove heavy metals from Indian MSW compost (New Delhi and Mumbai). It deals with two novel aspects, viz., (i) investigating the influence of EDTA-washing conditions, molarity, dosage, MSW compost-sample size, speed, and contact time, on their metal removal efficiencies, and (ii) maximizing the percentage removal of heavy metals by determining the optimal process control process parameters. These parameters were optimized in a batch reactor utilizing Taguchi orthogonal (L25) array. The optimization showed that the removal efficiencies were 96.71%, 47.37%, and 49.94% for Cd, Pb, and Zn in Delhi samples, whereas 45.55%, 79.52%, 59.63%, 82.31%, and 88.40% for Cd, Cu, Pb, Ni, and Zn in Mumbai samples. Results indicate that the removal efficiency of heavy metals was greatly influenced by EDTA-molarity. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of hydroxyl group, which aids heavy metal chelation. The results reveal the possibility of EDTA to reduce the hazardous properties of MSW compost.


Subject(s)
Composting , Metals, Heavy , Solid Waste/analysis , Chelating Agents/chemistry , Cadmium/analysis , Edetic Acid , Lead/analysis , Metals, Heavy/analysis , Soil/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...