Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 25(6): e14356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659159

ABSTRACT

PURPOSE: To investigate the operation principles of the automatic tube current modulation (ATCM) of a modern GE healthcare CT scanner, and the impact of related settings on image quality and patient dose. MATERIAL & METHODS: A dedicated phantom (Mercury 4.0) was scanned using two of the most frequently used clinical scanning protocols (chest and abdomen-pelvis). The preset protocol settings were used as starting points (reference conditions). Scan direction, scan mode (helical vs. axial), total beam width, tube potential (kVp), and ATCM settings were then modified individually to understand their impact on radiation dose and image quality. Regarding the ATCM settings, the SmartmA minimum and maximum mA limits, and the noise index (NI) values were varied. As surrogates of patient dose, the CTDIvol and DLP values of each scan were used. As surrogates of image quality were used the image noise and the detectability index (d') of five different materials (air, solid water, polystyrene, iodine, and bone) embedded in the Mercury phantom calculated with the ImQuest software. RESULTS: The scanning direction did not have any effect on ATCM curves, unlike what has been observed in CT scanners from other manufacturers. Total beam width does matter, however, the SmartmA limit settings and kVp selection had the greatest impact on image quality and dose. It was seen that improper minimum mA limit settings practically invalidated the ATCM operation. In contrast, when full modulation was allowed without restrictions, noise standard deviation, and detectability index became much more consistent across the wide range of phantom diameters. For lower kVp settings an impressive dose reduction was observed that requires further investigation. CONCLUSION: SmartmA is a tool that if not properly used may increase the patient doses considerably. Therefore, its settings should be carefully adjusted for each preset different clinical protocol.


Subject(s)
Image Processing, Computer-Assisted , Phantoms, Imaging , Radiation Dosage , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/instrumentation , Image Processing, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Signal-To-Noise Ratio
2.
J Appl Clin Med Phys ; 25(4): e14285, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38317593

ABSTRACT

PURPOSE: To investigate the impact of digital image post-processing algorithms on various image quality (IQ) metrics of radiographic images under different exposure conditions. METHODS: A custom-made phantom constructed according to the instructions given in the IAEA Human Health Series No.39 publication was used, along with the respective software that automatically calculates various IQ metrics. Images with various exposure parameters were acquired with a digital radiography unit, which for each acquisition produces two images: one for-processing (raw) and one for-presentation (clinical). Various examination protocols were used, which incorporate diverse post-processing algorithms. The IQ metrics' values (IQ-scores) obtained were analyzed to investigate the effects of increasing incident air kerma (IAK) on the image receptor, tube potential (kVp), additional filtration, and examination protocol on image quality, and the differences between image type (raw or clinical). RESULTS: The IQ-scores were consistent for repeated identical exposures for both raw and clinical images. The effect that changes in exposure parameters and examination protocol had on IQ-scores were different depending on the IQ metric and image type. The expected positive effect that increasing IAK and decreasing tube potential should have on IQ was clearly exhibited in two IQ metrics only, the signal difference-to-noise-ratio (SDNR) and the detectability index (d'), for both image types. No effect of additional filtration on any of the IQ metrics was detected on images of either type. An interesting finding of the study was that for all different image acquisition selections the d' scores were larger in raw images, whereas the other IQ metrics were larger in clinical images for most of the cases. CONCLUSIONS: Since IQ-scores of raw and their respective clinical images may be largely different, the same type of image should be consistently used for monitoring IQ constancy and when results from different X-ray systems are compared.


Subject(s)
Radiographic Image Enhancement , Software , Humans , Radiation Dosage , Radiography , X-Rays , Phantoms, Imaging
3.
J Appl Clin Med Phys ; 23(12): e13823, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36345212

ABSTRACT

PURPOSE: To investigate the effect of the exposure parameters on image quality (IQ) metrics of phantom images, obtained automatically using software or from visual evaluation. METHODS: Three commercial phantoms and a homemade phantom constructed according to the instructions given in the IAEA Human Health Series No. 39 publication were used, along with the respective software that estimate automatically various IQ metrics. Images with various exposure parameters were acquired in a digital radiography (DR) unit. For the commercial phantoms, visual evaluations were also performed. The IQ scores obtained were analyzed to investigate the effects of increasing incident air kerma (IAK), tube potential (kVp), additional filtration, and acquisition protocol on IQ. RESULTS: The effects of the exposure parameters on the IQ metrics, determined with the commercial and the IAEA phantoms, were not the same. For example, clear trends of improvement of IQ scores with increased IAK and reduction of most IQ scores with increased kVp were observed mostly with the IAEA phantom, but not with the commercial phantoms (for both automatic and visual scoring methods). For all phantoms, the maximum variations in IQ scores observed for repeated identical exposures were almost always below 10% with automatic evaluation whereas, for visual evaluation, reached 17%. CONCLUSIONS: Failure to detect some expected trends with the complex commercial phantoms may be attributed to the fact that IQ in DR is more strongly affected by the post-processing procedures, which may mask the effect of other parameters on IQ, something that was not observed with the simple IAEA phantom.


Subject(s)
Radiographic Image Enhancement , Software , Humans , Radiographic Image Enhancement/methods , Radiation Dosage , Phantoms, Imaging
4.
Eur J Radiol Open ; 9: 100454, 2022.
Article in English | MEDLINE | ID: mdl-36386764

ABSTRACT

Aim: The exposure index (EI) is used in routine quality control (QC) tests performed in the radiographic equipment installed in our hospitals. This study aimed at investigating the factors affecting the calculation of EI in QC and clinical images, and the implementation of target EI (EIT) and deviation index (DI) in clinical practice. Methods: The EI is 100 times the incident air kerma (IAK) in µGy on the image receptor, using the RQA-5 X-ray beam quality. Conformance to this relationship was investigated in QC images and clinical images acquired using anthropomorphic phantom body parts and different examination protocols, tube potential settings and radiation field sizes. Furthermore, a survey on EIT and DI data from clinical images was performed. Results: Though automatic exposure control (AEC) systems have been adjusted for an IAK of 2.5 µGy, for most anthropomorphic phantom images the EIs were far from 250, depending on the manufacturer, the anatomy imaged, and the examination protocol. Regarding the survey results, DI calculation was feasible in only 38 % of the systems, since for the rest EIT values have not been set. However, the rationale based on which EIT have been selected is unclear. Some systems use only one while others many different EIT values. Conclusion: Before using EI for quality control of clinical images image all receptors and AEC systems should be properly calibrated. Then, the methodology of selecting appropriate EIT should be refined, since the EI calculation may vary, depending on the manufacturer, the anatomy imaged, and the examination protocol.

5.
J Appl Clin Med Phys ; 23(7): e13620, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35678780

ABSTRACT

PURPOSE: To investigate the operation principles of the automatic tube current modulation (ATCM) of a CT scanner, using a dedicated phantom and the CT dosimetry index (CTDI) phantom. MATERIAL AND METHODS: The Mercury 4.0 phantom and three different configurations of the CTDI dosimetry phantom were employed. A frequently used clinical scanning protocol was employed as a basis for the acquisitions performed with all phantoms, using both scanning directions. Additional acquisitions with different pitch and examination protocols were performed with Mercury phantom, to further explore their effect on ATCM and the resulting image quality. Different software named DICOM Info Extractor, ImageJ, and imQuest, were used to derive CTDIvol and table position, image noise, and water equivalent diameter (WED) of each phantom CT image, respectively. ImQuest was also used to derive the detectability index (d') of five different materials (air, solid water, polystyrene, iodine, and bone) embedded in the Mercury phantom. RESULTS: It was exhibited with all four phantoms that the scanning direction greatly affects the modulation curves. The fitting of the dose modulations curves suggested that for each table position what determines the CTDIvol value is the WED values of the phantom structures laying ahead towards the scanning direction, for a length equal to the effective width of the X-ray beam. Furthermore, it was also exhibited that ATCM does not fully compensate for larger thicknesses, since images of larger WED phantom sections present more noise (larger SD) in all four phantoms and in Mercury 4.0 phantom smaller detectability (d'). CONCLUSION: Mercury 4.0 is a dedicated phantom for a complete and in-depth evaluation of the ATCM operation and the resulting image quality. However, in its absence, different CTDI configurations can be used as an alternative to investigate and comprehend some basic operation principles of the CT scanners' ATCM systems.


Subject(s)
Mercury , Tomography, X-Ray Computed , Phantoms, Imaging , Radiation Dosage , Tomography Scanners, X-Ray Computed , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...