Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 50(7): 3320-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19234340

ABSTRACT

PURPOSE: As part of a systematic elucidation of the pharmacology of prostaglandin's (PG) effects on intraocular pressure in the monkey, the prototypical selective prostanoid EP(4) receptor agonist (3,7-dithia PGE(1)) was examined. It was found to be highly efficacious in nonhuman primates, and its mechanism of ocular hypotensive activity was investigated. METHODS: Intraocular pressure (IOP) was measured by pneumatonometry in conscious monkeys restrained in custom-designed chairs. All other animal experiments were performed in animals sedated with ketamine or anesthetized with ketamine/diazepam and given drug or vehicle for various lengths of time. Aqueous flow was determined by fluorophotometry. Total outflow facility was measured by the two-level, constant-pressure method and by 2-minute tonography in both normotensive and hypertensive monkey eyes. Uveoscleral outflow was measured by perfusing the anterior chamber with FITC-labeled dextran for 30 minutes at a fixed IOP of approximately 15 mm Hg. Isometric responses to drugs were measured in longitudinal and radial preparations of monkey and human isolated ciliary smooth muscle specimens. RESULTS: The selective EP(4) receptor agonist 3,7-dithia PGE(1) and an isopropyl ester prodrug thereof reduced IOP in monkeys. A single dose of 3,7-dithia PGE(1) isopropyl ester, at a 0.01% or 0.1% dose, decreased IOP in the glaucomatous monkey in the range of 40% to 50%. Studies on total outflow facility by the two-level, constant-pressure perfusion method and tonography indicated that EP(4) receptor stimulation facilitated aqueous humor outflow facility. No effect on aqueous flow was apparent. In contrast to all PGs and prostamides studied to date, 3,7-dithia PGE(1) exerted no effect on uveoscleral outflow measured directly. Moreover, it did not relax longitudinal or radial preparations of isolated human or monkey ciliary muscles. CONCLUSIONS: The EP(4) receptor agonist 3,7-dithia PGE(1) is a highly efficacious IOP-lowering drug in monkeys. It has no effect on uveoscleral outflow but does increase total outflow facility, which accounts for a substantial proportion of the ocular hypotensive activity.


Subject(s)
Alprostadil/analogs & derivatives , Antihypertensive Agents/pharmacology , Aqueous Humor/metabolism , Intraocular Pressure/drug effects , Ocular Hypotension/etiology , Receptors, Prostaglandin E/agonists , Sclera/metabolism , Uvea/metabolism , Alprostadil/pharmacology , Animals , Anterior Chamber/metabolism , Atropine/pharmacology , Ciliary Body/drug effects , Dextrans/metabolism , Dinoprostone/pharmacology , Disease Models, Animal , Female , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Fluorophotometry , Humans , Isometric Contraction/physiology , Macaca fascicularis , Muscle, Smooth/physiology , Ocular Hypotension/metabolism , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E, EP4 Subtype , Tonometry, Ocular , Transfection
2.
Invest Ophthalmol Vis Sci ; 48(9): 4107-15, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17724194

ABSTRACT

PURPOSE: Despite structural similarity with prostaglandin F(2 alpha), the ocular hypotensive agent bimatoprost (Lumigan; Allergan, Inc., Irvine, CA) shows unique pharmacology in vitro and functional activity in vivo. Unfortunately, the precise mechanisms that underlie bimatoprost's distinctive impact on aqueous humor dynamics are unclear. The purpose of the present study was to investigate the effects of bimatoprost and a novel prostamide-selective antagonist AGN 211334 on human conventional drainage. METHODS: Two model systems were used to test the consequences of bimatoprost and/or AGN 211334 treatment on conventional drainage. Human anterior segments in organ culture were perfused at a constant flow rate of 2.5 microL/min while pressure was recorded continuously. After stable baseline facilities were established, segments were treated with drug(s), and pressure was monitored for an additional 3 days. In parallel, the drugs' effects on hydraulic conductivity of human trabecular meshwork (TM) cell monolayers were evaluated. Pharmacological properties of AGN 211334 were characterized in isolated feline iris preparations in organ culture and heterologously expressed G-protein-coupled receptors were examined in vitro. RESULTS: Bimatoprost increased outflow facility by an average of 40% +/- 10% within 48 hours of treatment (n = 10, P < 0.001). Preincubation or coincubation with AGN 211334 significantly blunted bimatoprost's effects by 95% or 43%, respectively. Similar results were obtained in cell culture experiments in which bimatoprost increased hydraulic conductivity of TM cell monolayers by 78% +/- 25%. Pretreatment with AGN 211334 completely blocked bimatoprost's effects, while coincubation decreased its effects on average by 74%. In both models, AGN 211334 alone significantly decreased fluid flux across trabecular tissues and cells. CONCLUSIONS: The findings indicate that bimatoprost interacts with a prostamide receptor in the trabecular meshwork to increase outflow facility.


Subject(s)
Amides/pharmacology , Antihypertensive Agents/pharmacology , Cloprostenol/analogs & derivatives , Lipids/pharmacology , Trabecular Meshwork/drug effects , Aged , Aged, 80 and over , Amides/antagonists & inhibitors , Animals , Aqueous Humor/metabolism , Bimatoprost , Calcium/metabolism , Calcium Signaling/physiology , Cats , Cell Culture Techniques , Cloprostenol/antagonists & inhibitors , Cloprostenol/pharmacology , Dinoprost/pharmacology , Dinoprostone/analogs & derivatives , Dinoprostone/pharmacology , Female , Humans , Intraocular Pressure/physiology , Iris/drug effects , Lipids/antagonists & inhibitors , Male , Middle Aged , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Organ Culture Techniques , Oxazoles/pharmacology , Receptors, Thromboxane/antagonists & inhibitors , Receptors, Thromboxane/metabolism , Recombinant Proteins , Trabecular Meshwork/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...