Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949950

ABSTRACT

Myristoylation is a type of protein acylation by which the fatty acid myristate is added to the N-terminus of target proteins, a process mediated by N-myristoyltransferases. Myristoylation is emerging as a promising cancer therapeutic target, however the molecular determinants of sensitivity to N-myristoyltransferase inhibition or the mechanism by which it induces cancer cell death are not completely understood. We report that N-myristoyltransferases are a novel therapeutic target in lung carcinoma cells with LKB1 and/or KEAP1 mutations in a KRAS mutant background. Inhibition of myristoylation decreases cell viability in vitro and tumor growth in vivo. Inhibition of myristoylation causes mitochondrial ferrous iron overload, oxidative stress, elevated protein poly (ADP)-ribosylation and death by parthanatos. Furthermore, NMT inhibitors sensitized lung carcinoma cells to platinum-based chemotherapy. Unexpectedly, the mitochondrial transporter Translocase of Inner Mitochondrial Membrane 17 homologue A (TIM17A) is a critical target of myristoylation inhibitors in these cells. TIM17A silencing recapitulated the effects of NMT inhibition at inducing mitochondrial ferrous iron overload and parthanatos. Furthermore, sensitivity of lung carcinoma cells to myristoylation inhibition correlated with their dependency on TIM17A. This study reveals the unexpected connection between protein myristoylation, the mitochondrial import machinery, and iron homeostasis. It also uncovers myristoylation inhibitors as novel inducers of parthanatos in cancer, and the novel axis N-myristoyltransferase-TIM17A as a potential therapeutic target in highly aggressive lung carcinomas.

2.
Evol Appl ; 16(12): 1861-1871, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38143901

ABSTRACT

Biological resistance to pesticides, vaccines, antibiotics, and chemotherapies creates huge costs to society, including extensive morbidity and mortality. We simultaneously face costly resistance to social changes, such as those required to resolve human-wildlife conflicts and conserve biodiversity and the biosphere. Viewing resistance as a force that impedes change from one state to another, we suggest that an analysis of biological resistance can provide unique and potentially testable insights into understanding resistance to social changes. We review key insights from managing biological resistance and develop a framework that identifies seven strategies to overcome resistance. We apply this framework to consider how it might be used to understand social resistance and generate potentially novel hypotheses that may be useful to both enhance the development of strategies to manage resistance and modulate change in socio-ecological systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...