Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Gene ; 914: 148388, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38499212

ABSTRACT

BACKGROUND: Congenital scoliosis (CS) is a spinal disorder caused by genetic-congenital vertebral malformations and may be associated with other congenital defects or may occur alone. It is genetically heterogeneous and numerous genes contributing to this disease have been identified. In addition, CS has a wide range of phenotypic and genotypic variability, which has been explained by the intervention of genetic factors like modifiers and environment genes. The aim of the present study was to determine the possible cause of CS in a Tunisian patient and to examine the association between mtDNA mutations and mtDNA content and CS. METHODS: Here we performed Whole-Exome Sequencing (WES) in a patient presenting clinical features suggestive of severe congenital scoliosis syndrome. Direct sequencing of the whole mitochondrial DNA (mtDNA) was also performed in addition to copy number quantification in the blood of the indexed case. In silico prediction tools, 3D modeling and molecular docking approaches were used. RESULTS: The WES revealed the homozygous missense mutation c.512A > G (p.H171R) in the TBXT gene. Bioinformatic analysis demonstrated that the p.H171R variant was highly deleterious and caused the TBXT structure instability. Molecular docking revealed that the p.H171R mutation disrupted the monomer stability which seemed to be crucial for maintaining the stability of the homodimer and consequently to the destabilization of the homodimer-DNA complex. On the other hand, we hypothesized that mtDNA can be a modifier factor, so, the screening of the whole mtDNA showed a novel heteroplasmic m.10150T > A (p.M31K) variation in the MT-ND3 gene. Further, qPCR analyses of the patient's blood excluded mtDNA depletion. Bioinformatic investigation revealed that the p.M31K mutation in the ND3 protein was highly deleterious and may cause the ND3 protein structure destabilization and could disturb the interaction between complex I subunits. CONCLUSION: We described the possible role of mtDNA genetics on the pathogenesis of congenital scoliosis by hypothesizing that the presence of the homozygous variant in TBXT accounts for the CS phenotype in our patient and the MT-ND3 gene may act as a modifier gene.


Subject(s)
DNA, Mitochondrial , Exome Sequencing , Phenotype , Scoliosis , Humans , Scoliosis/genetics , Scoliosis/congenital , DNA, Mitochondrial/genetics , Exome Sequencing/methods , Female , Genes, Mitochondrial , Mutation, Missense , Male , Molecular Docking Simulation , Mutation , Child
2.
J Hum Genet ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467738

ABSTRACT

Intellectual disabilities (ID) and autism spectrum disorders (ASD) have a variety of etiologies, including environmental and genetic factors. Our study reports a psychiatric clinical investigation and a molecular analysis using whole exome sequencing (WES) of two siblings with ID and ASD from a consanguineous family. Bioinformatic prediction and molecular docking analysis were also carried out. The two patients were diagnosed with profound intellectual disability, brain malformations such as cortical atrophy, acquired microcephaly, and autism level III. The neurological and neuropsychiatric examination revealed that P2 was more severely affected than P1, as he was unable to walk, presented with dysmorphic feature and exhibited self and hetero aggressive behaviors. The molecular investigations revealed a novel TRAPPC9 biallelic nonsense mutation (c.2920 C > T, p.R974X) in the two siblings. The more severely affected patient (P2) presented, along with the TRAPPC9 variant, a new missense mutation c.166 C > T (p.R56C) in the MID2 gene at hemizygous state, while his sister P1 was merely a carrier. The 3D modelling and molecular docking analysis revealed that c.166 C > T variant could affect the ability of MID2 binding to Astrin, leading to dysregulation of microtubule dynamics and causing morphological abnormalities in the brain. As our knowledge, the MID2 mutation (p.R56C) is the first one to be detected in Tunisia and causing phenotypic variability between the siblings. We extend the genetic and clinical spectrum of TRAPPC9 and MID2 mutations and highlights the possible concomitant presence of X-linked as well as autosomal recessive inheritance to causing ID, microcephaly, and autism.

3.
Metab Brain Dis ; 39(4): 611-623, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38363494

ABSTRACT

Short-chain enoyl-CoA hydratase deficiency (ECHS1D) is a rare congenital metabolic disorder that follows an autosomal recessive inheritance pattern. It is caused by mutations in the ECHS1 gene, which encodes a mitochondrial enzyme involved in the second step of mitochondrial ß-oxidation of fatty acids. The main characteristics of the disease are severe developmental delay, regression, seizures, neurodegeneration, high blood lactate, and a brain MRI pattern consistent with Leigh syndrome. Here, we report three patients belonging to a consanguineous family who presented with mitochondrial encephalomyopathy. Whole-exome sequencing revealed a new homozygous mutation c.619G > A (p.Gly207Ser) at the last nucleotide position in exon 5 of the ECHS1 gene. Experimental analysis showed that normal ECHS1 pre-mRNA splicing occurred in all patients compared to controls. Furthermore, three-dimensional models of wild-type and mutant echs1 proteins revealed changes in catalytic site interactions, conformational changes, and intramolecular interactions, potentially disrupting echs1 protein trimerization and affecting its function. Additionally, the quantification of mtDNA copy number variation in blood leukocytes showed severe mtDNA depletion in all probands.


Subject(s)
DNA, Mitochondrial , Enoyl-CoA Hydratase , Child , Child, Preschool , Humans , Male , Computer Simulation , Consanguinity , DNA, Mitochondrial/genetics , Enoyl-CoA Hydratase/genetics , Enoyl-CoA Hydratase/deficiency , Mutation/genetics , Pedigree
4.
J Mol Neurosci ; 73(9-10): 853-864, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37817054

ABSTRACT

Intellectual disabilities (ID) and autism spectrum disorders (ASD) are characterized by extreme genetic and phenotypic heterogeneity. However, understanding this heterogeneity is difficult due to the intricate interplay among multiple interconnected genes, epigenetic factors, oxidative stress, and environmental factors. Employing next-generation sequencing (NGS), we revealed the genetic cause of ID and autistic traits in two patients from a consanguineous family followed by segregation analysis. Furthermore, in silico prediction methods and 3D modeling were conducted to predict the effect of the variants. To establish genotype-phenotype correlation, X-chromosome inactivation using Methylation-specific PCR and oxidative stress markers were also investigated. By analyzing the NGS data of the two patients, we identified a novel frameshift mutation c.2174_2177del (p.Thr725MetfsTer2) in the MAP7D3 gene inherited from their mother along with the functional BDNF Val66Met polymorphism inherited from their father. The 3D modeling demonstrated that the p.Thr725MetfsTer2 variant led to the loss of the C-terminal tail of the MAP7D3 protein. This change could destabilize its structure and impact kinesin-1's binding to microtubules via an allosteric effect. Moreover, the analysis of oxidative stress biomarkers revealed an elevated oxidative stress in the two patients compared to the controls. To the best of our knowledge, this is the first report describing severe ID and autistic traits in familial cases with novel frameshift mutation c.2174_2177del in the MAP7D3 gene co-occurring with the functional polymorphism Val66M in the BDNF gene. Besides, our study underlines the importance of investigating combined genetic variations, X-chromosome inactivation (XCI) patterns, and oxidative stress markers for a better understanding of ID and autism etiology.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Humans , Intellectual Disability/genetics , Siblings , Autistic Disorder/genetics , Brain-Derived Neurotrophic Factor/genetics , X Chromosome Inactivation , Autism Spectrum Disorder/genetics , Mutation , Patient Acuity
5.
Neurogenetics ; 23(4): 257-270, 2022 10.
Article in English | MEDLINE | ID: mdl-35819538

ABSTRACT

Progressive encephalopathy with brain edema and/or leukoencephalopathy, PEBEL1, is a severe neurometabolic disorder characterized by rapidly progressive neurologic deterioration associated with a febrile illness. PEBEL1 is a lethal encephalopathy caused by NAXE gene mutations. Here we report a 6-month-old boy with mitochondrial encephalomyopathy from a consanguineous family. Molecular analysis was performed using whole-exome sequencing followed by segregation analysis. In addition, in silico prediction tools and molecular dynamic approaches were used to predict the structural effect of the mutation. Furthermore, molecular docking of the substrate NADP in both wild-type and mutated NAXE protein was carried out. Molecular analysis revealed the presence of the novel homozygous mutation c.641 T > A (p. Ile214Asn) in the NAXE gene, located at the NAD (P)H hydrate epimerase domain. In addition, bioinformatics analyses and molecular dynamics revealed that p. Ile214Asn mutation could affect the structure, stability, and compactness of the NAXE protein. Moreover, the result of the molecular docking showed that the p. Ile214Asn mutation leads to conformational changes in the catalytic cavity, thus modifying interaction with the substrate and restricting its access. We also compared the phenotype of our patient with those of previously reported cases with PEBEL syndrome. All bioinformatics findings provide evidence that the NAXE variant Asn214 disrupts NAXE protein functionality leading to an insufficient NAD (P)HX repair system and the development of clinical features of PEBEL1 syndrome in our patient. To our knowledge, our case is the 21st case of PEBEL1 patient worldwide and the first case in North Africa.


Subject(s)
Brain Diseases , NAD , Racemases and Epimerases , Humans , Brain Diseases/genetics , Molecular Docking Simulation , Mutation , NAD/metabolism , Pedigree , Exome Sequencing , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism
6.
Int J Dev Neurosci ; 82(7): 626-638, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35841120

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE; OMIM 603041) is a rare inherited metabolic disorder mostly caused by mutations in TYMP gene encoding thymidine phosphorylase (TP) protein that affects the mitochondrial nucleotide metabolism. TP, functionally active as a homodimer, is involved in the salvage pathway of pyrimidine nucleosides. MNGIE-like syndrome having an overlapping phenotype of MNGIE was also described and has been associated with mutations in POLG and RRM2B genes. In the present study, we report the molecular investigation of a consanguineous family including two patients with clinical features suggestive of MNGIE syndrome. Bioinformatics analyses were carried out in addition to mtDNA deletion screening and copy number quantification in the blood of the two patients. Whole exome sequencing and Sanger sequencing analyses revealed the segregation in the affected family a novel mutation c.1205T>A (p.L402Q) within the exon 9 of the TYMP gene. In addition, mtDNA analysis revealed the absence of mtDNA deletions and a decrease of the copy number in the blood of the two patients of the studied family. The p.Leu402Gln mutation was located in a conserved amino acid within the α/ß domain of the TP protein and several software supported its pathogenicity. In addition, and based on docking and molecular dynamic simulation analyses, results revealed that L402Q caused a conformational change in TP mutated structure and could therefore alter its flexibility and stability. These changes prevent also the formation of stable homodimer leading to non-functional protein with partial or complete loss of its catalytic activity.


Subject(s)
Mitochondrial Encephalomyopathies , Thymidine Phosphorylase , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mitochondrial Encephalomyopathies/genetics , Molecular Docking Simulation , Mutation , Thymidine/metabolism , Thymidine Phosphorylase/genetics , Thymidine Phosphorylase/metabolism , Pedigree , Male , Female
7.
J Mol Neurosci ; 72(8): 1695-1705, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35654936

ABSTRACT

FoxG1 encoded by FOXG1 gene is a transcriptional factor interacting with the DNA of targeted genes as well as with several proteins to regulate the forebrain development. Mutations in the FOXG1 gene have been shown to cause a wide spectrum of brain disorders, including the congenital variant of Rett syndrome. In this study, the direct sequencing of FOXG1 gene revealed a novel c.645C > A (F215L) variant in the patient P1 and a de novo known one c.755G > A (G252D) in the patient P2. To investigate the putative impact of FOXG1 missense variants, a computational pipeline by the application of in silico prediction methods, molecular dynamic simulation, and molecular docking approaches was used. Bioinformatics analysis and molecular dynamics simulation have demonstrated that F215L and G252D variants found in the DNA binding domain are highly deleterious mutations that may cause the protein structure destabilization. On the other hand, molecular docking revealed that F215L mutant is likely to have a great impact on destabilizing the protein structure and the disruption of the Bmi-1 binding site quite significantly. Regarding G252D mutation, it seems to abolish the ability of FoxG1 to bind DNA target, affecting the transcriptional regulation of targeted genes. Our study highlights the usefulness of combined computational approaches, molecular dynamic simulation, and molecular docking for a better understanding of the dysfunctional effects of FOXG1 missense mutations and their role in the etiopathogenesis as well as in the genotype-phenotype correlation.


Subject(s)
Molecular Dynamics Simulation , Mutation, Missense , DNA , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Molecular Docking Simulation , Mutation , Nerve Tissue Proteins/metabolism
8.
Acta Neurol Belg ; 121(6): 1733-1740, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32979145

ABSTRACT

Ataxia with isolated vitamin E deficiency (AVED) is a rare autosomal recessive cerebellar ataxia disorder that is caused by a mutation in the alpha-tocopherol transfer protein gene TTPA, leading to a lower level of serum vitamin E. Although it is almost clinically similar to Friedreich's ataxia, its devastating neurological features can be prevented with appropriate treatment. In this study, we present a patient who was initially diagnosed with Friedreich's ataxia, but was later found to have AVED. Frataxin gene screening revealed the absence of GAA expansion in homozygous or heterozygous state. However, TTPAgene sequencing showed the presence of the c.744delA mutation, leading to a premature stop codon (p.E249fx). In addition, the result of mutational analysis of MT-DNA genes revealed the presence of several variants, including the m.10044A>G mutation in MT-TG gene. Here, we report for the first time the coexistence of both mitochondrial and nuclear genes mutations in AVED.


Subject(s)
Ataxia/diagnosis , Ataxia/genetics , DNA Mutational Analysis/methods , DNA, Mitochondrial/genetics , Mutation/genetics , Vitamin E Deficiency/diagnosis , Vitamin E Deficiency/genetics , Base Sequence , Female , Humans , Pedigree , Young Adult
9.
Int J Dev Neurosci ; 79: 37-44, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31647993

ABSTRACT

Mutations in Methyl-CpG-Binding protein 2 (MECP2), located on Xq28 and encoding a methyl CpG binding protein, are commonly related to Rett syndrome. However, MECP2 mutations have already been reported in patients with neurodevelopmental abnormalities such as X-linked mental retardation, severe neonatal encephalopathy and Angelman-like syndrome (AS-like). Accordingly, we report the clinical, molecular and bioinformatic analyses in a Tunisian patient with AS-like phenotype. In fact, the direct sequencing of MECP2 and cloning essay reveals the emergence of an unusual novel double mutation, including a de novo mutation c.397C > T (p.R133C) and an inherited one c.608C > T (p.T203 M) co-occurring in Trans. We also provide the molecular evidence of the c.608C > T transmission to the patient which was present in her father at somatic mosaicism state. To gain insight into the molecular basis of this disorder, we undertook, for the first time, a whole mitochondrial genome mutational analysis. Thus, the results showed the presence of several variations and a homoplasmic mutation m.827A > G in the MT-RNR1 gene, leading to the disruption of the 12S rRNA secondary structure. Our report is considered as the first to describe an unusual novel double mutation (c.397C > T in trans with c.608C > T) in MECP2 co-occurring with the mitochondrial m.827A > G mutation in the MT-RNR1 gene in a Tunisian patient with AS-like. Besides, our results highlight the importance of studying MECP2 and the significance of mDNA screening in AS-like disorder for a better understanding of its etiopathogenesis.


Subject(s)
Methyl-CpG-Binding Protein 2/genetics , Mutation , Alleles , Child, Preschool , DNA Mutational Analysis , Female , Gene Frequency , Humans , Phenotype
10.
Int J Biol Macromol ; 116: 1153-1162, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29778876

ABSTRACT

BLB406 is a novel isolate of Bacillus thuringiensis with a larvicidal activity against Aedes aegypti larvae. It displays original plasmidic and crystal protein patterns. The present work reported molecular and bioinformatic analyses for the genome sequence of BLB406 using MiSeq Illumina next-generation sequencing technology. The reads were assembled by Velvet tool. Using RAST program and PGAAP, the genome of BLB406 strain was shown to contain 6297 genes corresponding to 5924 protein coding sequences. The BLB406 genome investigation with BtToxin_scanner program shows that this strain has an original and different combination of toxins compared to the published ones: five cry genes (cry11, cry22, cry2, cry60, cry64) and two distinct vegetative insecticidal vip4 genes. This combination provides a potential larvicidal and anti-cancer activities to BLB406. It might be a potential solution to some problems such as the narrow insecticidal spectra and insect resistance. The whole BLB406 genome information provides a valuable background for future in silico analyses as well as biotechnological applications in order to increase the production of commercial bioinsecticide based on BLB406 B. thuringiensis strain.


Subject(s)
Aedes/microbiology , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Pest Control, Biological , Animals
11.
Biochem Biophys Res Commun ; 497(4): 1043-1048, 2018 03 18.
Article in English | MEDLINE | ID: mdl-29481804

ABSTRACT

Leigh syndrome (LS) is a rare progressive neurodegenerative disorder occurring in infancy. The most common clinical signs reported in LS are growth retardation, optic atrophy, ataxia, psychomotor retardation, dystonia, hypotonia, seizures and respiratory disorders. The paper reported a manifestation of 3 Tunisian patients presented with LS syndrome. The aim of this study is the MT[HYPHEN]ATP6 and SURF1 gene screening in Tunisian patients affected with classical Leigh syndrome and the computational investigation of the effect of detected mutations on its structure and functions by clinical and bioinformatics analyses. After clinical investigations, three Tunisian patients were tested for mutations in both MT-ATP6 and SURF1 genes by direct sequencing followed by in silico analyses to predict the effects of sequence variation. The result of mutational analysis revealed the absence of mitochondrial mutations in MT-ATP6 gene and the presence of a known homozygous splice site mutation c.516-517delAG in sibling patients added to the presence of a novel double het mutations in LS patient (c.752-18 A > C/c. c.751 + 16G > A). In silico analyses of theses intronic variations showed that it could alters splicing processes as well as SURF1 protein translation. Leigh syndrome (LS) is a rare progressive neurodegenerative disorder occurring in infancy. The most common clinical signs reported in LS are growth retardation, optic atrophy, ataxia, psychomotor retardation, dystonia, hypotonia, seizures and respiratory disorders. The paper reported a manifestation of 3 Tunisian patients presented with LS syndrome. The aim of this study is MT-ATP6 and SURF1 genes screening in Tunisian patients affected with classical Leigh syndrome and the computational investigation of the effect of detected mutations on its structure and functions. After clinical investigations, three Tunisian patients were tested for mutations in both MT-ATP6 and SURF1 genes by direct sequencing followed by in silico analysis to predict the effects of sequence variation. The result of mutational analysis revealed the absence of mitochondrial mutations in MT-ATP6 gene and the presence of a known homozygous splice site mutation c.516-517delAG in sibling patients added to the presence of a novel double het mutations in LS patient (c.752-18 A>C/ c.751+16G>A). In silico analysis of theses intronic vaiations showed that it could alters splicing processes as well as SURF1 protein translation.


Subject(s)
Cytochrome-c Oxidase Deficiency/enzymology , Electron Transport Complex IV/metabolism , Leigh Disease/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Brain/diagnostic imaging , Child , Child, Preschool , Computer Simulation , DNA Mutational Analysis , Humans , Magnetic Resonance Imaging , Male , Mutation , RNA Splicing , Tunisia
12.
J Child Neurol ; 32(8): 694-703, 2017 07.
Article in English | MEDLINE | ID: mdl-28399682

ABSTRACT

Rett syndrome is an X-linked neurodevelopmental disorder, primarily caused by MECP2 mutations. In this study, clinical, molecular and bioinformatics analyses were performed in Rett patients to understand the relationship between MECP2 mutation type and the clinical severity. Two double MeCP2 mutations were detected: a novel one (p.G185 V in cis with p.R255X) in P1 and a known one (p.P179 S in cis with p.R255X) in P2. Besides, a novel synonymous mutation (c.807C>T; p.G269G), which could affect mRNA splicing, was identified in P3. The results from clinical severity analysis have shown that P1 was more severely affected than P2 with CSS being 35 and 14, respectively. Therefore, the phenotypic variability in P1 and P2 could be explained by the potential pathogenic effect of the RTT-causing missense mutation p.G185 V in the AT-hook1. In conclusion, clinical, molecular, and in silico investigations in the studied patients have been proven to be substantial for the genotype-phenotype correlation.


Subject(s)
Computational Biology , Genetic Predisposition to Disease/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutation, Missense/genetics , Rett Syndrome/genetics , Adolescent , Child , Child, Preschool , DNA Mutational Analysis , Female , Genetic Association Studies , Genotype , Humans , Models, Molecular , Rett Syndrome/physiopathology , Severity of Illness Index
13.
Acta Neurol Belg ; 117(1): 251-258, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27379843

ABSTRACT

Rett syndrome (RTT) whose major cause is the mutations in the X-linked MECP2 gene is a genetic disease that affects females. We screened two RTT patients using cytogenetic studies and in silico analysis as well as molecular analysis by the direct sequencing of MECP2. The cytogenetic results showed that although patient A was karyotypically normal, patient B showed chromosomal abnormalities, including chromosomal breakage in both chromosomes 2 and 5. In addition, chromosome 9 was detected on heteromorphic pattern (9ph+). A significant increase in sister-chromatid exchange (SCE) frequency was also observed in this patient. Although both patients were karyotypically different, they share the same MeCP2 mutation (p.P152R) which was predicted to be deleterious. To our knowledge, we describe the first association between MECP2 mutation, chromosomal abnormalities and high SCE frequency, which further validates the importance of the thorough chromosomal and molecular analyses that should be performed on the suspected RTT cases.


Subject(s)
Gene Rearrangement/genetics , Methyl-CpG-Binding Protein 2/genetics , Point Mutation , Rett Syndrome/genetics , Sister Chromatid Exchange/genetics , Child , Child, Preschool , Cytogenetic Analysis , Female , Genotype , Humans , Phenotype , Polymerase Chain Reaction , Tunisia
14.
J Child Neurol ; 30(13): 1715-21, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25862735

ABSTRACT

Rett syndrome is a monogenic X-linked dominant neurodevelopmental disorder related to mutation in MECP2, which encodes the methyl-CpG-binding protein MeCP2. The aim of this study was to search for mutations of MECP2 gene in Tunisian Rett patients and to evaluate the impact of the found variants on structural and functional features of MeCP2. The result of mutation analysis revealed that 3 Rett patients shared the same novel heterozygous point mutation c.175G>C (p.A59P). The p.A59P mutation was located in a conserved amino acid in the N-terminal segment of MeCP2. This novel mutation confers a phenotypic variability with different clinical severity scores (3, 8, and 9) and predicted by Sift and PolyPhen to be damaging. Modeling results showed that p.A59P adds 2 hydrogen bonds and changes the structural conformation of MeCP2 with a significant root mean square deviation value (9.66 Å), suggesting that this mutation could probably affect the conformation, function and stability of MeCP2.


Subject(s)
Methyl-CpG-Binding Protein 2/genetics , Mutation , Phenotype , Rett Syndrome/genetics , Child , Female , Humans , Hydrogen Bonding , Models, Molecular , Sequence Homology, Amino Acid , Severity of Illness Index , Tunisia
SELECTION OF CITATIONS
SEARCH DETAIL
...