Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
SAR QSAR Environ Res ; 33(2): 89-109, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35102805

ABSTRACT

Multidrug-resistant tuberculosis (MDR-TB) is a severe threat to mankind because most drugs are ineffective in inhibiting tubercular strains. Due to the increase of MDR-TB, many first and second-line drugs are ineffective against tubercular strains. To combat the resistance of currently accessible drugs, structural changes must be made on a regular basis. Thus, in the search for new antimycobacterial drugs, a series of 1-(2-(1H-indol-3-yl)-5-phenyl-1,3,4-oxadiazol-3(2H)-yl)-3-phenylprop-2-en-1-ones (5a-o) have been developed, synthesized, characterized, and screened for antimycobacterial activity. The synthetic approach includes imine generation and cyclization using both conventional and microwave methods to create hybrid molecules with indole and oxadiazole motifs. The set of synthesized compounds have demonstrated some promising activity against tubercular strains of Mycobacterium tuberculosis (ATCC 25177) and M. bovis (ATCC 35734). Compound 5l inhibited M. bovis strain 100% in 10 µg/mL concentration, while compound 5m inhibited M. tuberculosis strain 90.4% in 30 µg/mL concentration. Molecular docking study against mycobacterial enoyl reductase (InhA) could provide well-clustered solutions to the binding modes and affinity for these molecules as compound 5l showed glide score of -12.275 and glide energy of -54.937 kcal/mol.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Chemistry Techniques, Synthetic , Indoles/pharmacology , Microbial Sensitivity Tests , Microwaves , Molecular Docking Simulation , Oxadiazoles/pharmacology , Quantitative Structure-Activity Relationship , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...