Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 18(5): e1010531, 2022 05.
Article in English | MEDLINE | ID: mdl-35584191

ABSTRACT

Glycoprotein Env of human immunodeficiency virus type 1 (HIV-1) mediates viral entry through membrane fusion. Composed of gp120 and gp41 subunits arranged as a trimer-of-heterodimers, Env adopts a metastable, highly dynamic conformation on the virion surface. This structural plasticity limits the temporospatial exposure of many highly conserved, neutralizing epitopes, contributing to the difficulty in developing effective HIV-1 vaccines. Here, we employed antibody neutralization of HIV-1 infectivity to investigate how inter- and intra-gp120 interactions mediated by variable loops V1/V2 and V3 at the Env apex regulate accessibility of the gp41 membrane-proximal external region (MPER) at the Env base. Swapping the V3 loop from EnvSF162 into the EnvHXB2 background shifted MPER exposure from the prefusogenic state to a functional intermediate conformation that was distinct from the prehairpin-intermediate state sensitive to gp41-targeted fusion inhibitors. The V3-loop swap had a profound impact on global protein dynamics, biasing the equilibrium to a closed conformation resistant to most anti-gp120 antibodies, stabilizing the protein to both cold- and soluble CD4-induced Env inactivation, and increasing the CD4 requirements for viral entry. Further dissection of the EnvHXB2 V3 loop revealed that residue 306 uniquely modulated epitope exposure and trimer stability. The R306S substitution substantially decreased sensitivity to antibodies targeting the gp41 MPER and, surprisingly, the gp120 V3-loop crown (residues 312-315), but had only modest effects on exposure of intervening gp120 epitopes. Furthermore, the point mutation reduced soluble CD4-induced inactivation, but had no impact on cold inactivation. The residue appeared to exert its effects by electrostatically modifying the strength of intra-subunit interactions between the V1/V2 and V3 loops. The distinct patterns of neutralization and stability pointed to a novel prefusogenic Env conformation along the receptor activation pathway and suggested that apical Env-regulation of gp41 MPER exposure can be decoupled from much of the dynamics of gp120 subunits.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Neutralizing , Epitopes , HIV Antibodies , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/genetics , Humans , Virion/metabolism , Virus Internalization
2.
PLoS Pathog ; 12(12): e1006098, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27992602

ABSTRACT

Structural rearrangements of HIV-1 glycoprotein Env promote viral entry through membrane fusion. Env is a symmetric homotrimer with each protomer composed of surface subunit gp120 and transmembrane subunit gp41. Cellular CD4- and chemokine receptor-binding to gp120 coordinate conformational changes in gp41, first to an extended prehairpin intermediate (PHI) and, ultimately, into a fusogenic trimer-of-hairpins (TOH). HIV-1 fusion inhibitors target gp41 in the PHI and block TOH formation. To characterize structural transformations into and through the PHI, we employed asymmetric Env trimers containing both high and low affinity binding sites for individual fusion inhibitors. Asymmetry was achieved using engineered Env heterotrimers composed of protomers deficient in either CD4- or chemokine receptor-binding. Linking receptor engagement to inhibitor affinity allowed us to assess conformational changes of individual Env protomers in the context of a functioning trimer. We found that the transition into the PHI could occur symmetrically or asymmetrically depending on the stoichiometry of CD4 binding. Sequential engagement of multiple CD4s promoted progressive exposure of individual fusion inhibitor binding sites in a CD4-dependent fashion. By contrast, engagement of only a single CD4 molecule led to a delayed, but symmetric, exposure of the gp41 trimer. This complex coupling between Env-CD4 interaction and gp41 exposure explained the multiphasic fusion-inhibitor titration observed for a mutant Env homotrimer with a naturally asymmetric gp41. Our results suggest that the spatial and temporal exposure of gp41 can proceed in a nonconcerted, asymmetric manner depending on the number of CD4s that engage the Env trimer. The findings have important implications for the mechanism of viral membrane fusion and the development of vaccine candidates designed to elicit neutralizing antibodies targeting gp41 in the PHI.


Subject(s)
HIV Envelope Protein gp41/chemistry , HIV-1/physiology , Virus Internalization , Cell Line , HIV-1/chemistry , Humans , Models, Molecular , Protein Conformation
3.
Biochemistry ; 53(16): 2701-9, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24712327

ABSTRACT

The myosin light chain phosphatase (MLCP) is a cytoskeleton-associated protein phosphatase-1 (PP1) holoenzyme and a RhoA/ROCK effector, regulating cytoskeletal reorganization. ROCK-induced phosphorylation of the MLCP regulatory subunit (MYPT1) at two sites, Thr696 and Thr853, suppresses the activity, although little is known about the difference in the role. Here, we developed a new method for the preparation of the recombinant human MLCP complex and determined the molecular and cellular basis of inhibitory phosphorylation. The recombinant MLCP partially purified from mammalian cell lysates retained characteristics of the native enzyme, such that it was fully active without Mn(2+) and sensitive to PP1 inhibitor compounds. Selective thio-phosphorylation of MYPT1 at Thr696 with ROCK inhibited the MLCP activity 30%, whereas the Thr853 thio-phosphorylation did not alter the phosphatase activity. Interference with the docking of phospho-Thr696 at the active site weakened the inhibition, suggesting selective autoinhibition induced by phospho-Thr696. Both Thr696 and Thr853 sites underwent autodephosphorylation. Compared with that of Thr853, phosphorylation of Thr696 was more stable, and it facilitated Thr853 phosphorylation. Endogenous MYPT1 at Thr696 was spontaneously phosphorylated in quiescent human leiomyosarcoma cells. Serum stimulation of the cells resulted in dissociation of MYPT1 from myosin and PP1C in parallel with an increase in the level of Thr853 phosphorylation. The C-terminal domain of human MYPT1(495-1030) was responsible for the binding to the N-terminal portion of myosin light meromyosin. The spontaneous phosphorylation at Thr696 may adjust the basal activity of cellular MLCP and affect the temporal phosphorylation at Thr853 that is synchronized with myosin targeting.


Subject(s)
Myosin-Light-Chain Phosphatase/metabolism , Recombinant Proteins/isolation & purification , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Humans , Leiomyosarcoma/metabolism , Manganese/metabolism , Molecular Sequence Data , Myosin-Light-Chain Phosphatase/chemistry , Myosin-Light-Chain Phosphatase/genetics , Phosphorylation , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Threonine/metabolism , rho-Associated Kinases/metabolism
4.
Am J Physiol Lung Cell Mol Physiol ; 303(4): L334-42, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22683573

ABSTRACT

Caffeine is sometimes used in cell physiological studies to release internally stored Ca(2+). We obtained evidence that caffeine may also act through a different mechanism that has not been previously described and sought to examine this in greater detail. We ruled out a role for phosphodiesterase (PDE) inhibition, since the effect was 1) not reversed by inhibiting PKA or adenylate cyclase; 2) not exacerbated by inhibiting PDE4; and 3) not mimicked by submillimolar caffeine nor theophylline, both of which are sufficient to inhibit PDE. Although caffeine is an agonist of bitter taste receptors, which in turn mediate bronchodilation, its relaxant effect was not mimicked by quinine. After permeabilizing the membrane using ß-escin and depleting the internal Ca(2+) store using A23187, we found that 10 mM caffeine reversed tone evoked by direct application of Ca(2+), suggesting it functionally antagonizes the contractile apparatus. Using a variety of molecular techniques, we found that caffeine did not affect phosphorylation of myosin light chain (MLC) by MLC kinase, actin-filament motility catalyzed by MLC kinase, phosphorylation of CPI-17 by either protein kinase C or RhoA kinase, nor the activity of MLC-phosphatase. However, we did obtain evidence that caffeine decreased actin filament binding to phosphorylated myosin heads and increased the ratio of globular to filamentous actin in precontracted tissues. We conclude that, in addition to its other non-RyR targets, caffeine also interferes with actin function (decreased binding by myosin, possibly with depolymerization), an effect that should be borne in mind in studies using caffeine to probe excitation-contraction coupling in smooth muscle.


Subject(s)
Actins/metabolism , Caffeine/pharmacology , Muscle Relaxation/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Polymerization/drug effects , Animals , Biopolymers/chemistry , Biopolymers/metabolism , Cattle , Enzyme Assays , Humans , In Vitro Techniques , Indoles/pharmacology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/enzymology , Myosin-Light-Chain Kinase/metabolism , Permeability/drug effects , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Potassium Chloride/pharmacology , Theophylline/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...