Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131496, 2024 May.
Article in English | MEDLINE | ID: mdl-38626839

ABSTRACT

We aimed to study the potential of epigallocatechin-3-gallate/tyrosol-loaded chitosan/lecithin nanoparticles (EGCG/tyrosol-loaded C/L NPs) in streptozotocin-induced type 2 diabetes mellitus (T2DM) mice. The EGCG/tyrosol-loaded C/L NPs were created using the self-assembly method. Dynamic light scattering, Field Emission Scanning Electron Microscopy, and Fourier transform infrared spectroscopy were utilized to characterize the nanoparticle. Furthermore, in streptozotocin-induced T2DM mice, treatment with EGCG/tyrosol-loaded C/L NPs on fasting blood sugar levels, the expression of PCK1 and G6Pase, and IL-1ß in the liver, liver glutathione content, nanoparticle toxicity on liver cells, and liver reactive oxygen species were measured. Our findings showed that EGCG/tyrosol-loaded C/L NPs had a uniform size distribution, and encapsulation efficiencies of 84 % and 89.1 % for tyrosol and EGCG, respectively. The nanoparticles inhibited PANC-1 cells without affecting normal HFF cells. Furthermore, EGCG/tyrosol-loaded C/L NP treatment reduced fasting blood sugar levels, elevated hepatic glutathione levels, enhanced liver cell viability, and decreased reactive oxygen species levels in diabetic mice. The expression of gluconeogenesis-related genes (PCK1 and G6 Pase) and the inflammatory gene IL-1ß was downregulated by EGCG/tyrosol-loaded C/L NPs. In conclusion, the EGCG/tyrosol-loaded C/L NPs reduced hyperglycemia, oxidative stress, and inflammation in diabetic mice. These findings suggest that EGCG/tyrosol-loaded C/L NPs could be a promising therapeutic option for type 2 diabetes management.


Subject(s)
Catechin , Chitosan , Diabetes Mellitus, Experimental , Hyperglycemia , Liver , Nanoparticles , Animals , Chitosan/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Nanoparticles/chemistry , Mice , Liver/drug effects , Liver/metabolism , Liver/pathology , Hyperglycemia/drug therapy , Male , Blood Glucose , Streptozocin , Reactive Oxygen Species/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Humans , Glutathione/metabolism
2.
Nutr Cancer ; 74(6): 2196-2206, 2022.
Article in English | MEDLINE | ID: mdl-34607477

ABSTRACT

The Ferula assa-foetida (FA) is the healthy common-consumed anticancer beverage in Iranian folk medicine. In the current study, we aimed to produce a nanoemulsion-based drug delivery system containing FA essential oil (FAEO) and evaluate its antioxidant and anticancer activity on both MCF-7 cells and murine mammary cancer tissue. The FAEO-loaded nanoemulsion (FAEO-NE) was produced and characterized by DLS, TEM, FTIR, and Zeta potential analysis. Radical (ABTS and DPPH) scavenging activity, cytotoxic, apoptotic, and anti-angiogenic potentials of the FAEO-NE were studied by applying antioxidant (ABTS-DPPH), MTT, AO/PI cell staining, and Q-PCR analysis. Finally, its anti-tumor impact was evaluated on murine mammary tumor models. The FAEO-NE exhibited a meaningful antioxidant activity. Also, its significant cell-selective cytotoxic, apoptotic, and anti-angiogenic impacts on MCF-7 cancer cells indicated its anticancer potential. Moreover, the progressive destruction of the murine mammary glands cancer tissue confirmed their anticancer activity. Regarding the FAEO-NE cell-selective cytotoxic, apoptotic, and anti-angiogenic activity on MCF-7 breast cancer cells, it has the potential to be studied as a safe efficient anti-breast cancer agent.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Ferula , Oils, Volatile , Animals , Antineoplastic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Ferula/chemistry , Humans , Iran , MCF-7 Cells , Mice , Oils, Volatile/pharmacology
3.
Nutr Cancer ; 73(11-12): 2388-2396, 2021.
Article in English | MEDLINE | ID: mdl-32959696

ABSTRACT

BACKGROUND: Linum usitatissimum seed essential oil (LSEO) has been used to reduce the risk of prostate and colon cancer. In this study, we optimized the bio-accessibility and bio-compatibility of LSEO to evaluate its cytotoxic, apoptotic and anti-angiogenic impact on the human ovarian cancer cell line A2780. METHOD: We produced LSEO nanoemulsions (LSEO-NEs) utilizing the ultrasound-based technique and the size, its droplets' morphology and stability were characterized. LSEO-NE cytotoxicity was studied by estimating the viability of A2780 human ovarian cancer cell and normal human foreskin fibroblasts (HFFS). Their apoptotic activity was evaluated measuring the Caspase-3, 8 and nine gene expression. Finally, its anti-angiogenic potential was measured applying Chick Chorioallantoic Membrane (CAM) assay. RESULTS: A significant dose-dependent cytotoxic impact of LSEO-NE was detected in the A2780 cells and not in HFF cellsThe apoptotic genes expression profile confirmed the A2780 cell apoptosis death. Moreover, the reduction in length and number of blood vessels in the CAM assay demonstrated the anti-angiogenic activity of LSEO-NE. CONCLUSION: The cancer cell-selective cytotoxicity apoptosis, and anti-angiogenic effects of LSEO-NE indicate its potential as a novel anticancer compound. However, further cell lines have to be analyzed in case of its potential anticancer impacts on human ovarian cancer cells.


Subject(s)
Flax , Oils, Volatile , Ovarian Neoplasms , Apoptosis , Cell Line, Tumor , Humans , Oils, Volatile/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Seeds/metabolism
4.
J Food Biochem ; 43(8): e12956, 2019 08.
Article in English | MEDLINE | ID: mdl-31368576

ABSTRACT

Scientists are attempting to find novel methods to overcome cancers. Nanoemulsion systems as the novel drug delivery tools have been widely used in cancer therapy. In this study, the Carum Carvi oil nanoemulsions (CCONE) were prepared and its cytotoxic activity was studied on human colon cancer HT-29 cells using MTT assay. Flow cytometry and Real-time qPCR were triggered to evaluate the nanoemulsions' apoptotic properties. The results showed a significant negative association between the HT-29 cancer cell viability and CCONE doses of treatments compared with Huvec normal cells (p value < 0.001). The IC50 values were estimated 12.5 µg/ml and 50 µg/ml for HT-29 and Huvec, respectively. Moreover, we observed that increasing concentrations of nanoemulsions significantly upregulate Caspase-3 gene expression. The results showed the CCONE is an efficient novel apoptosis inducer for human colon cancer cells without any undesirable side effects. However, further in vitro and in vivo researches are required. PRACTICAL APPLICATIONS: Cancer is a complex and usually untreatable disorder. Several types of cancer therapy strategies have been applied widely to overcome cancers. Chemotherapy has been used in various types of cancers. In most cases, not only it had not been effective on cancer cells but also been distractive within normal tissues. According to results, Carum Carvi essential oil nanoemulsions have apoptotic and cytotoxic effects on colon cancer cells (HT-29). When it comes to cancer of any kind, it's important to realize that no dietary supplement can fully treat, cure, or prevent cancer. However, there are some supplements that can potentially decrease the risk of cancer. Nanoemulsions present several advantages including the ability to incorporate hydrophilic, amphiphilic, and lipophilic excipient ingredients, high physical stability, and rapid gastrointestinal digestibility. The Carum Carvi essential oil nanoemulsion can also be applied as an effective food supplement due to its potent apoptotic activity.


Subject(s)
Carum/chemistry , Caspase 3/genetics , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Cell Survival/drug effects , Emulsions/chemistry , Emulsions/pharmacology , HT29 Cells , Humans , Oils, Volatile/chemical synthesis , Plant Oils/chemical synthesis
5.
J Microencapsul ; 36(4): 399-409, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31250686

ABSTRACT

Aims: The sour cherry pit oil (SCPO) displays the potent anti-inflammatory, and antioxidant activities. In the present study, we have produced the SCPO nanoemulsion (SCPO-NE) to evaluate their anticancer impacts on breast cancer comparing with its un-processed oil. Methods: We employed an ultrasonication method to formulate the stable SCPO-NE. Their size, stability, and morphology were measured. Then, their cytotoxic impacts and apoptotic activity were checked on MCF7 breast cancer cells and compared with the normal Human foreskin fibroblasts (HFF). Finally, their anti-tumour effect was studied on murine breast cancer model (inoculated with TUBO cancer cells). Results: The results indicated the 36.5 nm stable SCPO-NE significantly decreased the MCF7 cells viability comparing with normal HFF cells, and reduced the tumour size in the murine model. Conclusion: We suggest that SCPO-NEs are able to efficiently inhibit breast cancer progression in both MCF7 cells and murine breast cancer model through apoptotic death induction.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Breast Neoplasms/drug therapy , Plant Oils/therapeutic use , Prunus avium , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Disease Models, Animal , Emulsions/chemistry , Emulsions/therapeutic use , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Plant Oils/chemistry , Prunus avium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...