Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Sci Rep ; 14(1): 10548, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719844

ABSTRACT

This study not only provides an innovative technique for producing rigid polyurethane foam (RPUF) composites, but it also offers a way to reuse metallurgical solid waste. Rigid polyurethane (RPUF) composite samples have been prepared with different proportions of iron slag as additives, with a range of 0-25% mass by weight. The process of grinding iron slag microparticles into iron slag nanoparticles powder was accomplished with the use of a high-energy ball mill. The synthesized samples have been characterized using Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscope. Then, their radiation shielding properties were measured by using A hyper-pure germanium detector using point sources 241Am, 133 BA, 152 EU, 137Cs, and 60Co, with an energy range of 0.059-1.408 MeV. Then using Fluka simulation code to validate the results in the energy range of photon energies of 0.0001-100 MeV. The linear attenuation coefficient, mass attenuation coefficient, mean free path, half-value layer and tenth-value layer, were calculated to determine the radiation shielding characteristics of the composite samples. The calculated values are in good agreement with the calculated values. The results of this study showed that the gamma-ray and neutron attenuation parameters of the studied polyurethane composite samples have improved. Moreover, the effect of iron slag not only increases the gamma-ray attenuation shielding properties but also enhances compressive strength and the thermal stability. Which encourages us to use polyurethane iron-slag composite foam in sandwich panel manufacturing as walls to provide protection from radiation and also heat insulation.

2.
Sci Rep ; 14(1): 4242, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378858

ABSTRACT

Radioactive iodine isotopes especially 131I are used for diagnosis and treatment of different types of cancer diseases. Due to the leak of radioactive iodine into the patient's urine in turn, the wastewater would be contaminated, so it is worth preparing a novel adsorption green material to remove the radioactive iodine from wastewater efficiently. The removal of 127I and 131I contaminants from aqueous solution is a problem of interest. Therefore, this work presents a new study for removing the stable iodine 127I- and radioactive iodine 131I from aqueous solutions by using the novel nano adsorbent (Nano ZnO/MWCNTs) which is synthesized by the arc discharge method. It is an economic method for treating contaminated water from undesired dissolved iodine isotopes. The optimal conditions for maximum removal are (5 mg/100 ml) as optimum dose with shacking (200 rpm) for contact time of (60 min), at (25 °C) in an acidic medium of (pH = 5). After the adsorption process, the solution is filtrated and the residual iodide (127I-) is measured at a maximum UV wavelength absorbance of 225 nm. The maximum adsorption capacity is (15.25 mg/g); therefore the prepared nano adsorbent (Nano ZnO/MWCNTs) is suitable for treating polluted water from low iodide concentrations. The adsorption mechanism of 127I- on to the surface of (Nano ZnO/MWCNTs) is multilayer physical adsorption according to Freundlich isotherm model and obeys the Pseudo-first order kinetic model. According to Temkin isotherm model the adsorption is exothermic. The removal efficiency of Nano ZnO/MWCNTs for stable iodine (127I-) from aqueous solutions has reached 97.23%, 89.75%, and 64.78% in case of initial concentrations; 0.1843 ppm, 0.5014 ppm and 1.0331 ppm, respectively. For the prepared radio iodine (131I-) solution of radioactivity (20 µCi), the dose of nano adsorbent was (10 mg/100 ml) and the contact time was (60 min) at (pH = 5) with shacking (200 rpm) at (25 °C). The filtration process was done by using a syringe filter of a pore size (450 nm) after 2 days to equilibrate. The removal efficiency reached (34.16%) after the first cycle of treatment and the percentage of residual radio iodine was (65.86%). The removal efficiency reached (94.76%) after five cycles of treatment and the percentage of residual radio iodine was (5.24%). This last percentage was less than (42.15%) which produces due to the natural decay during 10 days.

3.
Sci Rep ; 14(1): 1279, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218742

ABSTRACT

This research aimed to examine the radiation shielding properties of unique polymer composites for medical and non-medical applications. For this purpose, polymer composites, based on poly methyl methacrylate (PMMA) as a matrix, were prepared and reinforced with micro- and nanoparticles of ZrO2 fillers at a loading of 15%, 30%, and 45% by weight. Using the high purity germanium (HPGe) detector, the suggested polymer composites' shielding characteristics were assessed for various radioactive sources. The experimental values of the mass attenuation coefficients (MAC) of the produced composites agreed closely with those obtained theoretically from the XCOM database. Different shielding parameters were estimated at a broad range of photon energies, including the linear attenuation coefficient (µ), tenth value layer (TVL), half value layer (HVL), mean free path (MFP), effective electron density (Neff), effective atomic number (Zeff), and equivalent atomic number (Zeq), as well as exposure buildup factor (EBF) and energy absorption buildup factor (EABF) to provide more shielding information about the penetration of γ-rays into the chosen composites. The results showed that increasing the content of micro and nano ZrO2 particles in the PMMA matrix increases µ values and decreases HVL, TVL, and MFP values. P-45nZ sample with 45 wt% of ZrO2 nanoparticles had the highest µ values, which varied between 2.6546 and 0.0991 cm-1 as γ-ray photon energy increased from 0.0595 to 1.408 MeV, respectively. Furthermore, the highest relative increase rate in µ values between nano and micro composites was 17.84%, achieved for the P-45nZ sample at 59.53 keV. These findings demonstrated that ZrO2 nanoparticles shield radiation more effectively than micro ZrO2 even at the same photon energy and filler wt%. Thus, the proposed nano ZrO2/PMMA composites can be used as effective shielding materials to lessen the transmitted radiation dose in radiation facilities.

4.
Sci Rep ; 14(1): 1578, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238486

ABSTRACT

Recently, there has been a surge of interest in the application of radiation-shielding materials. One promising research avenue involves using free-lead metal oxides/polymer composites, which have been studied for their radiation shielding and characterization properties. This study reinforced the dimethylpolysiloxane (silicone rubber) composites with micro- and nano-sized particles of tin oxide, cadmium oxide, and bismuth oxide as additive materials. The composites were tested with 20 and 50 weight fractions, and their attenuation coefficients were measured using a NaI(TI) detector at gamma-ray energies ranging from 59.54 to 1408.01 keV. Also, the thermal and mechanical properties of the composites were observed and compared with those of free silicone rubber. The results showed that the 50% nano metal oxide/SR composites exhibited better thermal stability and attenuation properties than the other composites, also possessing unique attributes such as lightweight composition and exceptional flexibility. Consequently, this composite material holds immense potential for safeguarding vital organs, including the eyes and gonads, during radiological diagnosis or treatment procedures. Its exceptional ability to absorb a significant portion of incident rays makes it an invaluable asset in the field of radiation protection.

5.
Polymers (Basel) ; 15(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38006140

ABSTRACT

In this work, the effect of adding Pb nano/microparticles in polyurethane foams to improve thermo-physical and mechanical properties were investigated. Moreover, an attempt has been made to modify the micron-sized lead metal powder into nanostructured Pb powder using a high-energy ball mill. Two types of fillers were used, the first is Pb in micro scale and the second is Pb in nano scale. A lead/polyurethane nanocomposite is made using the in-situ polymerization process. The different characterization techniques describe the state of the dispersion of fillers in foam. The effects of these additions in the foam were evaluated, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) have all been used to analyze the morphology and dispersion of lead in polyurethane. The findings demonstrate that lead is uniformly distributed throughout the polyurethane matrix. The compression test demonstrates that the inclusion of lead weakens the compression strength of the nanocomposites in comparison to that of pure polyurethane. The TGA study shows that the enhanced thermal stability is a result of the inclusion of fillers, especially nanofillers. The shielding efficiency has been studied, MAC, LAC, HVL, MFP and Zeff were determined either experimentally or by Monte Carlo calculations. The nuclear radiation shielding properties were simulated by the FLUKA code for the photon energy range of 0.0001-100 MeV.

6.
Sci Rep ; 13(1): 18224, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880284

ABSTRACT

This study investigates the gamma radiation shielding properties of cement-ball clay matrix composites doped with micro- and nano-sized cadmium oxide (CdO) particles. The linear attenuation coefficient (LAC) was determined using a sodium iodide (NaI) detector and five radioactive point sources with energies ranging from 59.5 to 1408 keV. The LAC values obtained were compared to the XCOM database and found to be in good agreement. The composites' half-value layer (HVL), tenth value layer (TVL), mean free path (MFP), effective atomic number (Zeff), equivalent atomic number (Zeq), and absorption buildup factor (EABF) were determined. The results showed that the addition of CdO particles improved the radiation-shielding behavior of the composites and increasing the weight fraction of CdO particles increased the shielding effectiveness. The results also illustrated that when nano-sized CdO particles were compared to their micro-sized counterparts, there was a significant enhancement in radiation shielding effectiveness. For instance, a composite material composed of 50% cement, 41.7% ball clay, and 3.8% nano CdO at an energy level of 0.0595 MeV exhibited a remarkable 12.2% increase in attenuation, surpassing the performance of the micro-sized sample with an equivalent concentration. Similarly, another composite consisting of 50% cement, 33.3% ball clay, and 16.7% nano CdO demonstrated a significant 15.4% increase in attenuation at the same energy level, when compared to the micro-sized sample. The study demonstrates the potential of CdO-doped cement-ball clay matrix composites for gamma radiation shielding applications.

7.
Sci Rep ; 13(1): 13694, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608066

ABSTRACT

This work is an attempt to employ the electric arc furnace (EAF) slag as a by-product material to develop an alternative and environmentally friendly material for gamma-radiation protection applications such as in medical and industrial areas. For this purpose, different concentrations of micro-sized EAF slag (0, 20, 40, 60, 80, 100, 500, and 800 phr) were incorporated as fillers in the natural rubber (NR) matrix to produce the shielding composites. In addition, nano-sized EAF slag particles were prepared by using a high-energy ball milling technique to investigate the effect of particle size on the gamma-radiation shielding properties. The synthesized micro and nano EAF/NR composites were tested as protective materials against gamma-radiation by employing NaI(Tl) scintillation detector and standard radioactive point sources (152Eu, 137Cs, 133Ba, and 60Co). Different shielding parameters such as linear and mass attenuation coefficient, half value layer (HVL), tenth value layer, mean free path, effective atomic number (Zeff), and effective electron density (Neff) were determined to assess the radiation shielding capability of the EAF/NR composites. Furthermore, equivalent atomic number (Zeq) and the exposure buildup factor values for photon energy in the range from 0.015 to 15 MeV were also computed by Geometric Progression method. The experimental results of micro EAF/NR composites showed that at 121.78 keV, EAF0 composite (without EAF slag content) had the lowest µ value of 0.1695 cm-1, while the EAF800 composite (which was loaded with 800 phr of micro EAF slag) had the highest µ value of 0.2939 cm-1 at the same energy, which in turn decreases the HVL from 4.09 to 2.36 cm, respectively. Therefore, increasing the filler weight fractions of EAF slag in the NR matrix, increases the shielding properties of the composites. Moreover, the NR composite reinforced with 800 phr of nano EAF slag has better gamma-radiation shielding efficiency compared to that filled with 800 phr of micro EAF slag. The success of this work was to prepare a flexible, lightweight, low-cost, and lead-free material with better shielding capability.

8.
J Agric Food Chem ; 71(28): 10751-10760, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37419492

ABSTRACT

Hypoglycin A (HGA), methylenecyclopropylglycine (MCPrG), hypoglycin B (HGB), and γ-glutamyl-α-(methylenecyclopropyl) glycine (γ-glutamyl-MCPrG) are secondary plant metabolites occurring in sycamore maple (Acer pseudoplatanus) as well as several other Sapindaceae (e.g., Blighia sapida). By interfering with energy metabolism, they may cause severe intoxication in humans and other species. However, to date, there is not enough data available concerning the intake, metabolism, or excretion of sycamore maple toxins in dairy cows. In May 2022, five cows were observed over four days, when they had first access to a pasture with two sycamore maples. Grazing of their seedlings that grew numerously in between the pasture plants was monitored by direct observation. Milk samples were drawn both from individual cows and from the bulk tank. Spontaneous urine samples were collected from all cows on day 3 after access to the pasture. Seedlings (100 g) were sampled on the pasture and analyzed, together with milk and urine samples, for sycamore toxins and their metabolites using liquid chromatography-tandem mass spectrometry and liquid chromatography-high-resolution mass spectrometry. Cows ingested sycamore seedlings while grazing. Values of HGA in milk were below the limit of quantification. However, metabolites of HGA and MCPrG were detected in individual milk samples already at the end of the first day of grazing. Urine samples of all five cows showed higher concentrations of conjugated HGA and MCPrG metabolites than in milk. Observations suggest that dairy cows may have a low susceptibility toward sycamore maple toxins. However, whether this could be attributed to foregut fermenting species in general requires further elucidation.


Subject(s)
Acer , Horse Diseases , Hypoglycins , Humans , Horses , Female , Cattle , Animals , Hypoglycins/toxicity , Milk , Seedlings/chemistry , Glycine/analysis , Acer/chemistry , Lactation
9.
Sci Rep ; 13(1): 9945, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337045

ABSTRACT

Sheets of high-density polyethylene (HDPE) loaded with magnesium oxide in micro and nano were synthesized with different weight percentages of micro-MgO (0,5,10,20 and 30% by weight) and nano-MgO (5 and 30%) and shaped in form of disc and dog bone shape. The morphological, mechanical, and attenuation characteristics of each concentration were determined. The linear attenuation coefficients (LAC) of the prepared discs were calculated using a well-calibrated scintillation detector and five standard gamma-ray point sources (241Am, 133Ba, 137Cs, 60Co and 152Eu). The LAC was theoretically calculated for HDPE/micro-MgO composites using XCOM software. A good agreement between the theoretical and experimental results was observed. The comparison between micro and nano-MgO as a filler in HDPE was evaluated. The results proved that the loaded nano-MgO in different proportions of HDPE produced greater attenuation coefficients than its micro counterpart. The addition of nano MgO with different weight percentage led to a significant improvement in the mechanical properties of HDPE, the ultimate force and ultimate stress increased as the concentration of nano MgO increased, and the young modulus of HDPE also increased with increasing concentration of micro and nano MgO.

10.
BMC Complement Med Ther ; 23(1): 165, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37210483

ABSTRACT

BACKGROUND: Neuroinflammation and oxidative stress are critical players in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer's disease (AD) which is responsible for most cases of dementia in the elderly. With the lack of curative treatments, natural phenolics are potential candidates to delay the onset and progression of such age-related disorders due to their potent antioxidant and anti-inflammatory effects. This study aims at assessing the phytochemical characteristics of Origanum majorana L. (OM) hydroalcohol extract and its neuroprotective activities in a murine neuroinflammatory model. METHODS: OM phytochemical analysis was done by HPLC/PDA/ESI-MSn. Oxidative stress was induced in vitro by hydrogen peroxide and cell viability was measured using WST-1 assay. Swiss albino mice were injected intraperitoneally with OM extract at a dose of 100 mg/kg for 12 days and with 250 µg/kg LPS daily starting from day 6 to induce neuroinflammation. Cognitive functions were assessed by novel object recognition and Y-maze behavioral tests. Hematoxylin and eosin staining was used to assess the degree of neurodegeneration in the brain. Reactive astrogliosis and inflammation were assessed by immunohistochemistry using GFAP and COX-2 antibodies, respectively. RESULTS: OM is rich in phenolics, with rosmarinic acid and its derivatives being major constituents. OM extract and rosmarinic acid significantly protected microglial cells against oxidative stress-induced cell death (p < 0.001). OM protected against the LPS-induced alteration of recognition and spatial memory in mice (p < 0.001) and (p < 0.05), respectively. Mice that received OM extract prior to the induction of neuroinflammation showed comparable histology to control brains, with no overt neurodegeneration. Furthermore, OM pre-treatment decreased the immunohistochemistry profiler score of GFAP from positive to low positive and COX-2 from low positive to negative in the brain tissue, compared to the LPS group. CONCLUSION: These findings highlight the potential preventive effects of OM phenolics against neuroinflammation and pave the way toward drug discovery and development for neurodegenerative disorders.


Subject(s)
Cognitive Dysfunction , Origanum , Mice , Animals , Origanum/metabolism , Neuroinflammatory Diseases , Lipopolysaccharides/adverse effects , Cyclooxygenase 2/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Inflammation/metabolism , Rosmarinic Acid
11.
Materials (Basel) ; 16(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37048835

ABSTRACT

Improving mortar shielding properties to preserve environmental and human safety in radiation facilities is essential. Conventional cement mortars, composed of cement, water, and lime aggregate, are crucial for radiation shielding. Using recycled aggregates to produce new mortar and concrete compositions has attracted the attention of several researchers. In the current study, waste marble and iron slag as aggregates are used to create novel cement mortar compositions to study the aggregate's impact on the radiation attenuation capability of the mortar. Three mortar groups, including a control mortar (CM-Ctrl), were prepared based on cement and waste marble. The other two groups (CM-MIS, CM-NIS), contained 25% iron slag at different particle sizes as a replacement for a waste marble. The study aims to compare iron slag in their micro and nano sizes to discuss the effect of particle size on the mortar radiation capability. For this purpose, the NaI scintillation detector and radioactive point sources (241Am, 133Ba, 137Cs, 60Co, and 152Eu) were utilized to measure several shielding parameters, such as the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP), for the produced mortars at different photon energies. Furthermore, the transmission electron microscope (TEM) is used to measure the particle size of the aggregates. In addition, a scanning electron microscope (SEM) is utilized to acquire the cross-section morphologies of the prepared mortars. According to our findings, mortars prepared with nano-iron slag and waste marble offered superior shielding capabilities than mortars containing natural sand or fine crushed stone. The nano iron slag mortar can be utilized in place of typical sand mortar for applications as rendering or plastering materials for building medical diagnostic and CT scanner rooms, due to its improved shielding abilities.

12.
Anal Bioanal Chem ; 415(10): 1933-1942, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36877265

ABSTRACT

Hypoglycin A (HGA) and its homologue methylenecyclopropylglycine (MCPrG) are present in ackee and lychee as well as seeds, leaves, and seedlings of some maple (Acer) species. They are toxic to some animal species and humans. The determination of HGA, MCPrG, and their glycine and carnitine metabolites in blood and urine is a useful tool for screening for potential exposure to these toxins. In addition, HGA, MCPrG, and/or their metabolites have been detected in milk. In this work, simple and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methods without derivatization were developed and validated for the quantification of HGA, MCPrG, and their metabolites in cow's milk and urine. An extraction procedure from milk samples has been developed, whereas a dilute-and-shoot approach was implemented for urine samples. For quantification, the MS/MS analysis was performed in multiple reaction monitoring mode. The methods were validated according to the European Union guidelines using blank raw milk and urine as matrices. The limit of quantification presented here for HGA in milk (1.12 µg/L) is noticeably lower than the lowest published limit of detection (9 µg/L). Acceptable values for recovery (89-106% and 85-104% in milk and urine, respectively) and precision (≤ 20%) were obtained for all the quality control levels. The stability of HGA and MCPrG in frozen milk over a period of 40 weeks has been demonstrated. The method was applied to 68 milk samples from 35 commercial dairy farms and showed the absence of any quantifiable amounts of HGA, MCPrG, and their metabolites.


Subject(s)
Acer , Tandem Mass Spectrometry , Humans , Animals , Female , Cattle , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Milk/chemistry , Farms , Chromatography, High Pressure Liquid/methods , Glycine/analysis , Germany
13.
Mycotoxin Res ; 39(2): 109-126, 2023 May.
Article in English | MEDLINE | ID: mdl-36929507

ABSTRACT

Fungi of the genus Alternaria are ubiquitous in the environment. Their mycotoxins can leach out of contaminated plants or crop debris into the soil entering the plant via the roots. We aim to evaluate the importance of this entry pathway and its contribution to the overall content of Alternaria toxins (ATs) in wheat plants to better understand the soil-plant-phytopathogen system. A hydroponic cultivation system was established and wheat plants were cultivated for up to two weeks under optimal climate conditions. One half of the plants was treated with a nutrient solution spiked with alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA), whereas the other half of the plants was cultivated without mycotoxins. Plants were harvested after 1 and 2 weeks and analyzed using a QuEChERS-based extraction and an in-house validated LC-MS/MS method for quantification of the ATs in roots, crowns, and leaves separately. ATs were taken up by the roots and transported throughout the plant up to the leaves after 1 as well as 2 weeks of cultivation with the roots showing the highest ATs levels followed by the crowns and the leaves. In addition, numerous AOH and AME conjugates like glucosides, malonyl glucosides, sulfates, and di/trihexosides were detected in different plant compartments and identified by high-resolution mass spectrometry. This is the first study demonstrating the uptake of ATs in vivo using a hydroponic system and whole wheat plants examining both the distribution of ATs within the plant compartments and the modification of ATs by the wheat plants.


Subject(s)
Alternaria , Mycotoxins , Chromatography, Liquid , Alternaria/chemistry , Triticum/microbiology , Hydroponics , Food Contamination/analysis , Tandem Mass Spectrometry , Mycotoxins/analysis , Lactones/analysis , Soil
14.
Materials (Basel) ; 16(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903170

ABSTRACT

Due to the present industrial world, the risk of radioactivity is notably increasing. Thus, an appropriate shielding material needs to be designed to protect humans and the environment against radiation. In view of this, the present study aims to design new composites of the main matrix of bentonite-gypsum with a low-cost, abundant, and natural matrix. This main matrix was intercalated in various amounts with micro- and nanosized particles of bismuth oxide (Bi2O3) as the filler. Energy dispersive X-ray analysis (EDX) recognized the chemical composition of the prepared specimen. The morphology of the bentonite-gypsum specimen was tested using scanning electron microscopy (SEM). The SEM images showed the uniformity and porosity of a cross-section of samples. The NaI (Tl) scintillation detector was used with four radioactive sources (241Am, 137Cs, 133Ba, and 60Co) of various photon energies. Genie 2000 software was used to determine the area under the peak of the energy spectrum observed in the presence and absence of each specimen. Then, the linear and mass attenuation coefficients were obtained. After comparing the experimental results of the mass attenuation coefficient with the theoretical values from XCOM software, it was found that the experimental results were valid. The radiation shielding parameters were computed, including the mass attenuation coefficients (MAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP), which are dependent on the linear attenuation coefficient. In addition, the effective atomic number and buildup factors were calculated. The results of all of these parameters provided the same conclusion, which confirms the improvement of the properties of γ-ray shielding materials using a mixture of bentonite and gypsum as the main matrix, which is much better than using bentonite alone. Moreover, bentonite mixed with gypsum is a more economical means of production. Therefore, the investigated bentonite-gypsum materials have potential uses in applications such as gamma-ray shielding materials.

15.
Materials (Basel) ; 16(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36837205

ABSTRACT

In the current study, the gamma-radiation-shielding characteristics of novel gypsum-lime-waste marble-based mortars reinforced with micro-PbO and nano-PbO powders were investigated. In total, seven mortar groups, including a control mortar (named GLM), were prepared. The other groups contained10, 20, and 30 wt.% of both micro-PbO and nano-PbO as a waste marble replacement. This study aimed to explore the effect of particle size and concentrations of PbO powders on the γ-ray-shielding capability of GLM mortars. For this purpose, an HPGe detector and five standard radioactive point sources (241Am, 133Ba, 137Cs, 60Co, and 152Eu) were employed to measure different shielding parameters, including the linear attenuation coefficient (µ), mass attenuation coefficient (µm), mean free path (MFP), half-value layer (HVL), and tenth-value layer (TVL), for the prepared samples in the energy range between 59.53 keV to 1408.01 keV. On the basis of µm values, other significant shielding parameters such as effective atomic number (Zeff), effective electron density (Neff), equivalent atomic number (Zeq), and exposure buildup factor (EBF) were also computed to explore the potential usage of the proposed mortars as radiation protective materials. The results reported that the smallest HVL, TVL, and MPF, as well as the largest attenuation values, were obtained for mortars reinforced by nano-PbO compared to those containing micro-PbO. It can be concluded from the results that the mortar samples containing nano-PbO had a remarkably improved gamma-radiation-shielding ability. Thus, these mortars can be used for radiation shielding on walls in nuclear facilities to reduce the transmitted radiation dose.

16.
Materials (Basel) ; 16(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36837210

ABSTRACT

This study aims to explore the radiation protection properties of white mortars based on white cement as a binder and Bi2O3 micro and nanoparticles in proportions of 15 and 30% by weight as replacement sand. The average particle size of micro- and nano-Bi2O3 was measured using a transmission electron microscope (TEM). The cross-sectional morphology and distribution of Bi2O3 within the samples can be obtained by scanning electron microscopy (SEM), showing that nanoscale Bi2O3 particles have a more homogeneous distribution within the samples than microscale Bi2O3 particles. The shielding parameters of the proposed mortars were measured using the HPGe detector at various γ-ray energies emitted by standard radioactive point sources 241Am, 133Ba, 60Co, 137Cs, and 152Eu. The experimental values of the prepared mortars' mass attenuation coefficients (MAC) match well with those determined theoretically from the XCOM database. Other shielding parameters, including half value layer (HVL), tenth value layer (TVL), mean free path (MFP), effective electron density (Neff), effective atomic number (Zeff), equivalent atomic number (Zeq), and exposure buildup factor (EBF), were also determined at different photon energies to provide more shielding information about the penetration of gamma radiation into the selected mortars. The obtained results indicated that the sample containing 30% by weight of nano Bi2O3 has the largest attenuation coefficient value. Furthermore, the results show that the sample with a high concentration of Bi2O3 has the highest equivalent atomic numbers and the lowest HVL, TVL, MFP, and EBF values. Finally, it can be concluded that Bi2O3 nanoparticles have higher efficiency and protection compared to microparticles, especially at lower gamma-ray energies.

17.
Sci Rep ; 13(1): 210, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36604568

ABSTRACT

Reinforced polymer composites are a recent type of advanced shielding material that has been studied experimentally and theoretically. This work described the protection properties of silicon rubber filled with nano and micro tin oxide (II). These shielding materials are evaluated by parameters such as mass attenuation coefficient, linear attenuation coefficient, mean free path, effective atomic number, and buildup factor. The morphology and mechanical properties of silicon rubber, which is reinforced with tin oxide (II) particles in terms of weight fraction and size, have been studied. The results explain that the mass attenuation coefficient increases as tin oxide (II) concentration increases at a particular photon energy. It was found that the shielding properties of nano tin oxide (II) composites are more effective than micro tin oxide (II) composites against gamma rays. The effective atomic number values increase by increasing tin oxide (II) and so on equivalent atomic number. On the other hand, increasing tin oxide (II) weight fraction led to an increase in buildup factor maximum, which proved that tin oxide (II) concentration has significant effectiveness in radiation protection.

18.
Sci Rep ; 12(1): 21788, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36526645

ABSTRACT

This paper introduces a new approach of testing piezoelectric nanofibers as antibacterial mat. In this work, both Polyvinylidene fluoride (PVDF) and PVDF embedded with thermoplastic polyurethane nanofibers are synthesized as nanofibers mat via electrospinning technique. Then, such mat is analyzed as piezoelectric material to generate electric voltage under different mechanical excitations. Furthermore, morphological and chemical characteristics have been operated to prove the existence of beta sheets piezoelectricity of the synthesized nanofibers mats. Then, the synthesized nanofibers surfaces have been cyclically stretched and exposed to bacteria specimen. It has been noticed that the generated voltage and the corresponding localized electric field positively affect the growth of bacteria and reduces the formation of K. penomenue samples bacteria colonies. In addition, the effect of both stretching frequency and pulses numbers have been studied on the bacteria count, growth kinetics, and protein leakage. Our contribution here is to introduce an innovative way of the direct impact of the generated electric field from piezoelectric nanofibers on the reduction of bacteria growth, without depending on traditional anti-bacterial nanoparticles. This work can open a new trend of the usability of piezoelectric nanofibers through masks, filters, and wound curing mats within anti-bacterial biological applications.


Subject(s)
Nanofibers , Polyvinyls , Anti-Bacterial Agents/pharmacology , Polyurethanes/pharmacology , Bacteria
19.
Polymers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432928

ABSTRACT

The use of radiation is mandatory in modern life, but the harms of radiation cannot be avoided. To minimize the effect of radiation, protection is required for the safety of the environment and human life. Hence, inventing a better shield than a conventional shielding material is the priority of researchers. Due to this reason, this current research deals with an innovative shielding material named EKZ samples having a composition of (epoxy resin (90-40) wt %-kaolin clay (10-25) wt %-ZnO-nano particles (0-35) wt %). The numerous compositional variations of (epoxy resin, kaolin clay, and ZnO-nano particles on the prepared EKZ samples varied the density of the samples from 1.24 to 1.95 g/cm3. The radiation shielding parameter of linear attenuation coefficient (LAC), half value layer (HVL), tenth value layer (TVL), and radiation protection efficiency (RPE) were measured to evaluate the radiation diffusion efficiency of newly made EKZ samples. These radiation shielding parameters were measured with the help of the HPGe detector utilizing the three-point sources (Am-241, Cs-137, and Co-60). The obtained results exposed that the value of linear attenuation coefficient (LAC) and radiation protection efficiency (RPE) was maximum, yet the value of half value layer (HVL), and tenth value layer (TVL), were minimum due to the greater amount of kaolin clay and ZnO-nanoparticles, whereas the amount of epoxy resin was lesser. In addition, it has been clear that as-prepared EKZ samples are suitable for low-dose shielding applications as well as EKZ-35 showed a better shielding ability.

20.
Toxins (Basel) ; 14(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36136546

ABSTRACT

Hypoglycin A (HGA) and methylenecyclpropylglycine (MCPrG) are formed by some maple trees (Acer species) and have been associated with incidences of atypical myopathy among horses in pastures. In this work, a simple and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method without derivatization was developed for the quantification of HGA and MCPrG in maple samples and validated according to EU guidelines. The LOQ presented here for HGA (16.4 µg/kg) is considerably lower than the lowest published LOQ (500 µg/kg). This method confirms that sycamore and box elder maple contain considerable amounts of HGA and MCPrG. In addition, the presence of the dipeptides hypoglycin B and γ-glutamyl-MCPrG in these two maple species is shown using high-resolution MS. This is the first report on the presence of these dipeptides in maple since 1973. The presence of HGB and γ-glutamyl-MCPrG could change the way we understand animal intoxication following the ingestion of maple.


Subject(s)
Acer , Horse Diseases , Hypoglycins , Acer/chemistry , Animals , Chromatography, Liquid , Dipeptides , Horses , Hypoglycins/analysis , Hypoglycins/toxicity , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...