Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Anal Chem ; 2020: 2921417, 2020.
Article in English | MEDLINE | ID: mdl-32089690

ABSTRACT

Nowadays, there is an increasing need for sensitive real-time measurements of various analytes and monitoring of industrial products and environmental processes. Herein, we describe a fluorescence spectrometer in continuous flow mode in which the sample is fed to the flow cell using a peristaltic pump. The excitation beam is introduced to the sample chamber by an optical fiber. The fluorescence emitted upon excitation is collected at the right angle using another optical fiber and then transmitted to the fluorescence spectrometer which utilizes an array detector. The array detection, as a key factor in process analytical chemistry, made the fluorescence spectrometer suited for multiwavelength detection of the fluorescence spectrum of the analytes. After optimization of the experimental parameters, the system has been successfully employed for sensitive determination of four fluoroquinolone antibiotics such as ciprofloxacin, ofloxacin, levofloxacin, and moxifloxacin. The linear dynamic ranges of four fluoroquinolones were between 0.25 and 20 µg·mL-1, and the detection limit of the method for ciprofloxacin, ofloxacin, levofloxacin, and moxifloxacin were 81, 36, 35, and 93 ng·mL-1, respectively. Finally, the proposed system is carried out for determination of fluoroquinolones in some pharmaceutical formulations.

2.
PLoS One ; 14(3): e0211711, 2019.
Article in English | MEDLINE | ID: mdl-30897168

ABSTRACT

Current therapies for pancreatic ductal adenocarcinoma (PDAC) only modestly impact survival and can be highly toxic. A greater understanding of the molecules regulating this disease is critical for identifying new drug targets and developing more effective therapies. The L6 family of proteins are known to be positive regulators of tumor growth and metastasis among various cancers. However, little is known about the L6 family member TM4SF18. We investigated the expression and localization of the TM4SF18 protein in normal human pancreas and in PDAC tissue. Utilizing immunohistochemistry (IHC) and western blot analysis, our studies for the first time demonstrate that TM4SF18 is highly expressed in PDAC tumor epithelium. Furthermore, we identified TM4SF18 to be expressed in normal acinar tissue and weakly expressed in normal ducts. Although there is minimal expression in normal ducts, we observed increased TM4SF18 levels in preneoplastic ducts and tumor epithelium. To investigate a functional role of TM4SF18 in PDAC we developed stably-expressing inducible shRNA pancreatic cancer cell lines. Knockdown of the TM4SF18 protein led to a significant decrease in Capan-1 cell growth as measured by the MTT assay, demonstrating this molecule to be a novel regulator of PDAC. Uniquely there is no ortholog of the TM4SF18 gene in mouse or rat prompting us to seek other in vivo experimental models. Using IHC and western blot analysis, expression of TM4SF18 was confirmed in the porcine PDAC model, thus we establish an alternative model to investigate this gene. TM4SF18 represents a promising novel biomarker and therapeutic target for pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Tetraspanins/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Animals, Genetically Modified , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/physiology , Cell Survival/physiology , Disease Models, Animal , Epithelium/metabolism , Epithelium/pathology , Female , Gene Expression , Gene Knockdown Techniques , Humans , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...