Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
RSC Adv ; 10(40): 23675-23681, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517329

ABSTRACT

We report the development and use of a light-mediated in situ grafting technology for the surface modification of biosynthetic corneal implants with peptide-capped nanoparticles (15-65 nm). The resulting materials have antimicrobial properties in bacterial suspension and also reduced the extent of biofilm formation. Our in situ grafting technology offers a rapid route for the introduction of antimicrobial properties to premoulded corneal implants, and potentially other soft implant targets.

2.
ACS Biomater Sci Eng ; 6(2): 1124-1134, 2020 02 10.
Article in English | MEDLINE | ID: mdl-33464871

ABSTRACT

A novel strategy is needed for treating nonhealing wounds, which is able to simultaneously eradicate pathogenic bacteria and promote tissue regeneration. This would improve patient outcome and reduce the number of lower limb amputations. In this work, we present a multifunctional therapeutic approach able to control bacterial infections, provide a protective barrier to a full-thickness wound, and improve wound healing in a clinically relevant animal model. Our approach uses a nanoengineered antimicrobial nanoparticle for creating a sprayable layer onto the wound bed that prevents bacterial proliferation and also eradicates preformed biofilms. As a protective barrier for the wound, we developed a thermoresponsive collagen-based matrix that has prohealing properties and is able to fill wounds independent of their geometries. Our results indicate that using a combination of the matrix with full-thickness microscopic skin tissue columns synergistically contributed to faster and superior skin regeneration in a nonhealing wound model in diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Collagen , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice , Skin , Wound Healing
3.
Heliyon ; 4(12): e01067, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619958

ABSTRACT

In living organisms, biofilms are defined as complex communities of bacteria residing within an exopolysaccharide matrix that adheres to a surface. In the clinic, they are typically the cause of chronic, nosocomial, and medical device-related infections. Due to the antibiotic-resistant nature of biofilms, the use of antibiotics alone is ineffective for treating biofilm-related infections. In this review, we present a brief overview of concepts of bacterial biofilm formation, and current state-of-the-art therapeutic approaches for preventing and treating biofilms. Also, we have reviewed the prevalence of such infections on medical devices and discussed the future challenges that need to be overcome in order to successfully treat biofilms using the novel technologies being developed.

SELECTION OF CITATIONS
SEARCH DETAIL
...