Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Signal Behav ; 19(1): 2298053, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38190763

ABSTRACT

Plants, as sessile organisms, are subjected to diverse abiotic stresses, including salinity, desiccation, metal toxicity, thermal fluctuations, and hypoxia at different phases of plant growth. Plants can activate messenger molecules to initiate a signaling cascade of response toward environmental stresses that results in either cell death or plant acclimation. Nitric oxide (NO) is a small gaseous redox-active molecule that exhibits a plethora of physiological functions in growth, development, flowering, senescence, stomata closure and responses to environmental stresses. It can also facilitate alteration in protein function and reprogram the gene profiling by direct or indirect interaction with different target molecules. The bioactivity of NO can be manifested through different redox-based protein modifications including S-nitrosylation, protein nitration, and metal nitrosylation in plants. Although there has been considerable progress in the role of NO in regulating stress signaling, still the physiological mechanisms regarding the abiotic stress tolerance in plants remain unclear. This review summarizes recent advances in understanding the emerging knowledge regarding NO function in plant tolerance against abiotic stresses. The manuscript also highlighted the importance of NO as an abiotic stress modulator and developed a rational design for crop cultivation under a stress environment.


Subject(s)
Nitric Oxide , Signal Transduction , Acclimatization , Cell Death , Stress, Physiological
2.
Biometals ; 34(1): 15-32, 2021 02.
Article in English | MEDLINE | ID: mdl-33040319

ABSTRACT

The present study designed to illustrate correlation between cadmium induced stress and plant growth, photosynthetic pigments, morphological and physiological attributes. To study these parameters 2 weeks old seedling of B. juncea were subjected to 50 µM Cd, 100 µM Cd and 100 µM SNP separately and in combination with SNP. After 96 h, the treated plant were harvested to analyze the cellular homeostasis and metal tolerance mechanism via examining growth, stress parameters, enzymatic and non enzymatic antioxidants and expression level of NR. Higher level of Cd (100 µM) significantly increased accumulation of reactive oxygen species and malonaldehyde content in comparison to 50 µM Cd. Exogenous supplementation of SNP (100 µM) to 50 µM Cd treated plant had an additive effect on plant growth by improving the level of proline, photosynthetic pigments and activities of enzymatic antioxidants which was confirmed by histochemical staining for NADPH-d and NO fluorescence from DAF-DA staining in roots of B. juncea. Applying SNP to 50 µM Cd exposed B. juncea roots enhanced NR activity by 1.36 folds and increased NO production by 1.12 folds than individual Cd treated roots. In addition, semi quantitative RT-PCR study revealed the induction of BjNR was more pronounced in 50 µM Cd treated roots in comparison to 100 µM Cd treated roots. The present finding revealed NO confers increased B. juncea tolerance to Cd stress by stimulation of antioxidants and reestablishment of cellular redox status. Different biochemical analysis showed that plant growth, photosynthetic pigment and antioxidants were positively correlated with NO and it's negatively correlated with oxidative stress biomarkers. Therefore, NO is gaseous signalling molecule with potential role in Cd detoxification mechanism in B. juncea.


Subject(s)
Antioxidants/pharmacology , Mustard Plant/drug effects , Nitric Oxide/pharmacology , Reactive Oxygen Species/metabolism , Biodegradation, Environmental , Cadmium/metabolism , Mustard Plant/metabolism
3.
3 Biotech ; 10(11): 499, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33150125

ABSTRACT

The present investigation was designed to determine the interaction of nitric oxide with other antioxidants in relieving oxidative stress induced by NaCl at morphological, physiological and molecular level. 15 days old seedlings of B. juncea were subjected to 50 mM NaCl alone, 100 µM SNP alone and in combination (SNP + NaCl) in hoagland growth medium for 96 h and to analyze the cellular homeostasis and salt tolerance mechanism via examining growth, stress parameters, enzymatic and non enzymatic antioxidants and expression level of NR. Exposure of 100 µM sodium nitroprusside to mustard seedling enhanced photosynthetic pigment content and prevented plant growth inhibition. Accumulation of MDA and H2O2 was more pronounced in individual NaCl treated seedling than in the combination of NaCl and SNP. Applying SNP enhanced NR activity by 1.70 folds and increased NO production by 2.26 folds than individual salt treated roots. Furthermore, the activities of CAT, GPX and NR act synergistically with endogenous NO level whereas APX work antagonistically. In addition, the study also demonstrates that NO regulated NaCl induced transcriptional expression of NR. Induction of BjNR in Indian mustard roots lead to enhanced the plant resistance against salinity stress. The present finding revealed that NO confers increased B. juncea tolerance to salt stress by stimulation of antioxidants and reestablishment of cellular redox status.

4.
Physiol Mol Biol Plants ; 26(1): 51-62, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32158120

ABSTRACT

The manuscript highlights the role of antioxidants in alleviation of salinity stress in two principal legume crops Cyamopsis tetragonoloba and Vigna radiata of Indian Thar Desert. The study evaluates correlation between the antioxidants of two cultivars in terms of morphological and physiological alterations. Hydroponically acclimatized seedlings of both the crops were subjected to NaCl stress at different concentrations ranges from 10 to 100 mM. After 96 h, the treated legumes were harvested to analyze the cellular homeostasis and salt tolerance mechanism via examining growth, stress parameters, osmoprotectants and enzymatic antioxidants. Differential response in the antioxidants activity was observed in crops. Equal contribution of antioxidants in mitigation of salinity stress was recorded in C. tetragonoloba while V. radiata shows greater tolerance by accumulating greater amount of proline which is approximately 2.72 folds higher than C. tetragonoloba. Moreover, the NR and HO1 activities in V. radiata were recorded to be 2.76 and 1.55 folds respectively which is 1.2 times higher in comparison to C. tetragonoloba. The detrimental effect of NaCl in terms of MDA content was also higher in V. radiata which concluded that V. radiata is more reactive towards salinity stress than C. tetragonoloba. The study is significant as this is the first report illustrating the sensitivity and tolerance level of NaCl in legumes of Thar Desert.

SELECTION OF CITATIONS
SEARCH DETAIL
...