Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Chem ; 42(24): 1710-1719, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34196019

ABSTRACT

Despite their mass production and large applications, polyolefins' stability and durability toward the air, moisture, and weather resistance is a challenge for the ecosystem. After long-term exposure to ultraviolet (UV) radiation or high-temperature or erosion, polyolefins undergo degradation generating microplastics (MPs). The MPs generated after the degradation of these polyolefins are hazardous for the ecosystem. In the present work, we have carried out density functional theory (DFT) studies to investigate the photodegradation of six different polyolefins ranging from polyethylene to polydecene, differing in side-chain. Herein, we have investigated photooxidized derivatives of different polyolefins and analyzed their relative stability, conformations, UV-visible spectral behavior, and carbonyl index. The photooxidized derivatives of various polyolefins formed during degradation are examined. The time-dependent density functional theory analysis confirms that the carbonyl groups of photooxidized products show absorption peak in Infrared (IR) and visible region, acting as light-absorbing species. The relative stabilities of hydroperoxide formed during photo/thermal oxidation of different polyolefins have been evaluated to explain the degradation behavior. The oligomerization and stabilization energies of their corresponding hydroperoxide's were computed and analyzed to explain the degradation behavior of the polyolefins. The computed results suggest that polyolefins in their pristine state are stable toward photooxidation, but chemical impurities like carbonyl, unsaturated carbonyl, carboxylic acid, and hydroperoxide derivatives make them prone to undergo degradation, a fundamental process leading to generation of MPs. The comparative results confirmed that the side-chain length affects the stability and degradation of different polyolefins toward photooxidation.

2.
Inorg Chem ; 59(22): 16168-16177, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33103424

ABSTRACT

Superbenzene porphyrin conjugates find wide range of applications from nonlinear optical materials to semiconductors. Herein, we report the synthesis and characterization of 5,15-bis(3,5-di-tert-butylphenyl)-10,20-bis(pentaphenylphenyl)phenylporphyrin and its Zinc-metallated complex. Oxidative planarization of 5,15-bis(3,5-di-tert-butylphenyl)-10,20-bis(pentaphenylphenyl)phenylporphyrin and its metallated complex was carried out by using NOBF4 as an oxidizing agent. The formation of superbenzene porphyrin conjugates validates its Scholl type reactions. The laboratory-synthesized porphyrin conjugates were characterized experimentally using spectroscopic techniques such as 1H NMR, 13C NMR, electron spin resonance, and ultraviolet-visible spectroscopy for structural conformation. In addition, density functional theory calculations were carried out to validate the experimental results. The theoretical and experimental results show that the 4-(pentaphenylphenyl)phenyl ligand increases the stability, optical properties, and rate of planarization of synthesized porphyrins. The conjugates exhibited intense and distant electronic communication between two hexabenzocoronene sites, taking advantage of porphyrin as a π-spacer. The π-radical cation has also been found to be an intermediate in oxidative C-C bond formation. NICS calculations support such a conclusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...