Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 130: 111736, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38401462

ABSTRACT

AIMS: Autism spectrum disorder (ASD) is a global concern,affecting around 75 million individuals.Various factors contribute to ASD,including mercury-containing preservatives like thimerosal (Thim) found in some vaccines.This study explored whether citicoline could be a therapeutic option for Thim-induced neuronal damage in a mouse model of ASD.Additionally,the study investigated the effects of citicoline on the α7nAChRs/Akt/Nrf2/caspase-3 pathway,which may be involved in the development of ASD. MATERIALS AND METHODS: The study separated newborn mice into four groups.The control group received saline injections,while the Thim group received intramuscular injections of 3000 µg Hg/kg Thim on days 7,9,11,and 15 after birth.The two citicoline groups were administered Thim followed by intraperitoneal injections of 250 mg/kg or 500 mg/kg citicoline for three weeks.Afterward,various parameters were assessed, including growth,behavior,brain histopathology,oxidative stress,apoptotic,and inflammatory markers. KEY FINDINGS: Untreated Thim-exposed mice exhibited significant brain damage,which was substantially alleviated by citicoline treatment.This beneficial effect was associated with increased expressions and concentrations of brain α7nAChRs and Akt, increased brain content of Nrf2, and the hippocampus contents of acetylcholine. Citicoline treatment decreased the brain levels of oxidative stress markers (MDA and NO),the apoptotic marker caspase-3,and pro-inflammatory markers (NF-κB,TNF-α,and IL-1ß). The drug also increased the brain GPx activity. SIGNIFICANCE: Based on the results of this study,the α7nAChRs pathway appears to be essential for the therapeutic effectiveness of citicoline in treating Thim-induced ASD in mice.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Mice , Thimerosal/therapeutic use , Thimerosal/adverse effects , Cytidine Diphosphate Choline , alpha7 Nicotinic Acetylcholine Receptor , Caspase 3 , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Autistic Disorder/chemically induced , NF-E2-Related Factor 2 , Proto-Oncogene Proteins c-akt , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...