Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e28569, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560193

ABSTRACT

The occurrence of wind shear and severe thunderstorms during the final approach phase contributes to nearly half of all aviation accidents. Pilots usually employ the go-around procedure in order to lower the likelihood of an unsafe landing. However, multiple factors influence the go-arounds induced by wind shear. In order to predict the wind shear-induced go-around, this study utilized a cutting-edge AI-based Combined Kernel and Tree Boosting (KTBoost) framework with various data augmentation strategies. First, the KTBoost model was trained, tested, and compared to other Machine Learning models using the data extracted from Hong Kong International Airport (HKIA)-based Pilot Reports for the years 2017-2021. The performance evaluation revealed that the KTBoost model with Synthetic Minority Oversampling Technique - Edited Nearest Neighbor (SMOTE-ENN)- augmented data demonstrated superior performance as measured by the F1-Score (94.37%) and G-Mean (94.87%). Subsequently, the SHapley Additive exPlanations (SHAP) approach was employed to elucidate the interpretation of the KTBoost model using data that had been treated with the SMOTE-ENN technique. According to the findings, flight type, wind shear magnitude, and approach runway contributed the most to the wind shear-induced go-around. Compared to international flights, Hong Kong-based airlines endured the highest number of wind shear-induced go-arounds. Shear due to the tailwind contributed more to the go-around than the headwinds. The runways with the most wind shear-induced Go-arounds were 07C and 07R.

2.
Risk Anal ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37700727

ABSTRACT

The occurrence of severe low-level wind shear (S-LLWS) events in the vicinity of airport runways poses a significant threat to flight safety and exacerbates a burgeoning problem in civil aviation. Identifying the risk factors that contribute to occurrences of S-LLWS can facilitate the improvement of aviation safety. Despite the significant influence of S-LLWS on aviation safety, its occurrence is relatively infrequent in comparison to non-SLLWS incidents. In this study, we develop an S-LLWS risk prediction model through the utilization of ensemble imbalance learning (EIL) strategies, namely, BalanceCascade, EasyEnsemble, and RUSBoost. The data for this study were obtained from PIREPs and LiDAR at Hong Kong International Airport. The analysis revealed that the BalanceCascade strategy outperforms EasyEnsemble and RUSBoost in terms of prediction performance. Afterward, the SHapley Additive exPlanations (SHAP) interpretation tool was used in conjunction with the BalanceCascade model for the risk assessment of various factors. The four most influential risk factors, according to the SHAP interpretation tool, were hourly temperature, runway 25LD, runway 25LA, and RWY (encounter location of LLWS). S-LLWS was likely to happen at Runway 25LD and Runway 25LA in temperatures ranging from low to moderate. Similarly, a high proportion of S-LLWS events occurred near the runway threshold, and a relatively small proportion occurred away from it. The EIL strategies in conjunction with the SHAP interpretation tool may accurately predict the S-LLWS without the need for data augmentation in the data pre-processing phase.

3.
Sci Rep ; 13(1): 10939, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414818

ABSTRACT

Aircraft landings are especially perilous when the wind is gusty near airport runways. For this reason, an aircraft may deviate from its glide slope, miss its approach, or even crash in the worst cases. In the study, we used the state-of-the-art glass-box model, the Explainable Boosting Machine (EBM), to estimate the variation in headwind speed and turbulence intensity along the airport runway glide slope and to interpret the various contributing factors. To begin, the wind field characteristics were examined by developing a scaled-down model of Hong Kong International Airport (HKIA) runway as well as and the surrounding buildings and complex terrain in the TJ-3 atmospheric boundary layer wind tunnel. The placement of probes along the glide slope of the model runway aided in the measurement of wind field characteristics at different locations in the presence and absence of surrounding buildings. Next, the experimental data was used to train the EBM model in conjunction with Bayesian optimization approach. The counterpart black box models (extreme gradient boosting, random forest, extra tree and adaptive boosting) as well as other glass box models (linear regression and decision tree) were compared with the outcomes of the EBM model. Based on the holdout testing data, the EBM model revealed superior performance for both variation in headwind speed and turbulence intensity in terms of mean absolute error, mean squared error, root mean squared error and R-square values. To further evaluate the impact of different factors on the wind field characteristics along the airport runway glide slope, the EBM model allows for a full interpretation of the contribution of individual and pairwise interactions of factors to the prediction results from both a global and a local perspective.


Subject(s)
Aircraft , Airports , Bayes Theorem , Hong Kong
4.
Article in English | MEDLINE | ID: mdl-35270617

ABSTRACT

Road traffic accidents are one of the world's most serious problems, as they result in numerous fatalities and injuries, as well as economic losses each year. Assessing the factors that contribute to the severity of road traffic injuries has proven to be insightful. The findings may contribute to a better understanding of and potential mitigation of the risk of serious injuries associated with crashes. While ensemble learning approaches are capable of establishing complex and non-linear relationships between input risk variables and outcomes for the purpose of injury severity prediction and classification, most of them share a critical limitation: their "black-box" nature. To develop interpretable predictive models for road traffic injury severity, this paper proposes four boosting-based ensemble learning models, namely a novel Natural Gradient Boosting, Adaptive Gradient Boosting, Categorical Gradient Boosting, and Light Gradient Boosting Machine, and uses a recently developed SHapley Additive exPlanations analysis to rank the risk variables and explain the optimal model. Among four models, LightGBM achieved the highest classification accuracy (73.63%), precision (72.61%), and recall (70.09%), F1-scores (70.81%), and AUC (0.71) when tested on 2015-2019 Pakistan's National Highway N-5 (Peshawar to Rahim Yar Khan Section) accident data. By incorporating the SHapley Additive exPlanations approach, we were able to interpret the model's estimation results from both global and local perspectives. Following interpretation, it was determined that the Month_of_Year, Cause_of_Accident, Driver_Age and Collision_Type all played a significant role in the estimation process. According to the analysis, young drivers and pedestrians struck by a trailer have a higher risk of suffering fatal injuries. The combination of trailers and passenger vehicles, as well as driver at-fault, hitting pedestrians and rear-end collisions, significantly increases the risk of fatal injuries. This study suggests that combining LightGBM and SHAP has the potential to develop an interpretable model for predicting road traffic injury severity.


Subject(s)
Accidents, Traffic , Pedestrians , Data Collection , Humans , Machine Learning , Motor Vehicles
5.
PLoS One ; 17(2): e0262941, 2022.
Article in English | MEDLINE | ID: mdl-35108288

ABSTRACT

To undertake a reliable analysis of injury severity in road traffic accidents, a complete understanding of important attributes is essential. As a result of the shift from traditional statistical parametric procedures to computer-aided methods, machine learning approaches have become an important aspect in predicting the severity of road traffic injuries. The paper presents a hybrid feature selection-based machine learning classification approach for detecting significant attributes and predicting injury severity in single and multiple-vehicle accidents. To begin, we employed a Random Forests (RF) classifier in conjunction with an intrinsic wrapper-based feature selection approach called the Boruta Algorithm (BA) to find the relevant important attributes that determine injury severity. The influential attributes were then fed into a set of four classifiers to accurately predict injury severity (Naive Bayes (NB), K-Nearest Neighbor (K-NN), Binary Logistic Regression (BLR), and Extreme Gradient Boosting (XGBoost)). According to BA's experimental investigation, the vehicle type was the most influential factor, followed by the month of the year, the driver's age, and the alignment of the road segment. The driver's gender, the presence of a median, and the presence of a shoulder were all found to be unimportant. According to classifier performance measures, XGBoost surpasses the other classifiers in terms of prediction performance. Using the specified attributes, the accuracy, Cohen's Kappa, F1-Measure, and AUC-ROC values of the XGBoost were 82.10%, 0.607, 0.776, and 0.880 for single vehicle accidents and 79.52%, 0.569, 0.752, and 0.86 for multiple-vehicle accidents, respectively.


Subject(s)
Accidents, Traffic/classification , Machine Learning , Wounds and Injuries/pathology , Area Under Curve , Bayes Theorem , Humans , Logistic Models , Pakistan , ROC Curve , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...