Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Trop Med Infect Dis ; 9(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38535887

ABSTRACT

INTRODUCTION: Raw milk may contain pathogenic microorganisms harmful to humans, e.g., multidrug-resistant Escherichia coli non-O157:H7, which can cause severe colitis, hemolytic uremia, and meningitis in children. No studies are available on the prevalence of Shiga toxin-producing E. coli (STEC O157:H7) in sick or healthy dairy animals in the Khyber Pakhtunkhwa Province of Pakistan. AIM: This study aimed to isolate, characterize, and detect antibiotic resistance in STEC non-O157:H7 from unpasteurized milk of dairy bovines in this province. MATERIALS AND METHODS: We collected raw milk samples (n = 800) from dairy farms, street vendors, and milk shops from different parts of the Khyber Pakhtunkhwa Province. E. coli was isolated from these samples followed by latex agglutination tests for serotyping. The detection of STEC was conducted phenotypically and confirmed by the detection of virulence genes genotypically. An antibiogram of STEC isolates was performed against 12 antibiotics using the disc diffusion method. RESULTS: A total of 321 (40.12%) samples were found to be positive for E. coli in this study. These samples were processed for the presence of four virulence genes (Stx1, Stx2, ehxA, eae). Forty samples (5.0%) were STEC-positive. Of these, 38%, 25%, 19%, and 18% were positive for Stx1, Stx2, ehxA, and eae, respectively. Genotypically, we found that 1.37% of STEC isolates produced extended-spectrum beta-lactamase (ESBL) and contained the blaCTX M gene. Resistance to various antibiotics ranged from 18% to 77%. CONCLUSION: This study highlights the risk of virulent and multidrug-resistant STEC non-O157:H7 in raw milk and the need for proper quality surveillance and assurance plans to mitigate the potential public health threat.

2.
ACS Omega ; 9(1): 166-177, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222566

ABSTRACT

Proper management and control measurements are needed to stop the spread of highly pathogenic E. coli isolates that cause urinary tract infections (UTI) by developing new antibacterial agents to ensure the safety of public health. Therefore, the present investigations were used to achieve the synthesis of iron oxide nanoparticles (IONPs) via a simple coprecipitation method using ferric nitrates Fe (NO3)3 as the precursor and hydrazine solution as the precipitator and to explore the antibacterial activity against eradicating Uropathogenic Escherichia coli (E. coli). The synthesized IONPs were further studied using a UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopic (SEM) analysis. The maximum surface plasmon resonance peak was observed as absorption at 320 nm in a colloidal solution to validate the synthesis of IONPs. The FT-IR analysis was used to identify different photoactive functional groups that were responsible for the reduction of Fe (NO3)3 to IONPs. The crystalline nature of synthesized IONPs was revealed by XRD patterns with an average particle size ranging as 29 nm. The SEM image was employed to recognize the irregular morphology of synthesized nanoparticles. Moreover, significant antibacterial activity was observed at 1 mg/mL stock solution but after (125, 250, and 500 µg/mL) dilution, the synthesized IONPs showed moderate activity and became inactive at lower concentrations. The morphological and biochemical tests were used to confirm the presence of E. coli in the samples. Furthermore, the minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) were carried out to determine the inhibitory concentrations for the isolated bacteria. The isolated E. coli were also subjected to antibiotic sensitivity testing that showed high resistance to antibiotics such as penicillin and amoxicillin. Thus, the findings of this study were to use IONPs against antibiotic resistance that has been developed in an inappropriate way.

3.
Vet Sci ; 10(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133234

ABSTRACT

Ticks pose a major threat to cattle health and production in Pakistan because they transmit pathogens of diseases like Babesiosis and Theileriosis. Hyalomma spp., found across Africa, Asia, and Europe, are especially problematic. This study explored biocontrol of Hyalomma spp. using spore-free fungal culture filtrates collected from dairy farm soil in Kohat, Pakistan. Three fungal species of the genera Alternaria, Aspergillus, and Penicillium were isolated, and their filtrates were tested against tick adults and larvae. Filtrate concentrations were prepared at different strengths. Data were taken after the exposure of adults and larvae ticks to various concentrations of the fungal filtrates. Results indicated that at 100% concentration, all fungal filtrates induced 100% mortality in adults and larvae. Decreasing filtrate concentration lowered tick mortality. The lowest concentration caused the least mortality. The effect was time- and dose-dependent. In conclusion, spore-free fungal culture filtrates can provide biocontrol of Hyalomma spp. in a time- and concentration-dependent manner. Further research should explore the active compounds causing mortality and optimal application methods. The process outlined here provides a natural biocontrol alternative to chemical pesticides to reduce tick infestations and associated cattle diseases in Pakistan.

4.
Diagn Microbiol Infect Dis ; 105(4): 115883, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731197

ABSTRACT

This study aimed to elucidate differentially expressed proteins in drug resistant Salmonella Typhi. Among 100 samples, S. typhi were identified in 43 samples. In drug susceptibility profile, 95.3% (41/43), 80% (35/43) and 70% (30/43) resistances were observed against Nalidixic acid, Ampicillin, and Chloramphenicol respectively. No resistance was observed against Imipenum and Azithromycin while only 11% (5/43) isolates were found resistant to Ceftriaxone. Mass spectrometric differential analysis resulted in 23 up-regulated proteins in drug resistant isolates. Proteins found up-regulated are involved in virulence (vipB, galU, tufA, and lpp1), translation (rpsF, rpsG, rplJ, and rplR), antibiotic resistance (zwf, phoP, and ompX), cell metabolism (metK, ftsZ, pepD, and secB), stress response (ridA, rbfA, and dps), housekeeping (gapA and eno) and hypothetical proteins including ydfZ, t1802, and yajQ. These proteins are of diverse nature and functions but highly interconnected. Further characterization may be helpful for elucidation of new biomarker proteins and therapeutic drug targets.


Subject(s)
Salmonella typhi , Typhoid Fever , Humans , Salmonella typhi/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Typhoid Fever/drug therapy , Proteomics , Microbial Sensitivity Tests , Drug Resistance, Bacterial , RNA-Binding Proteins/therapeutic use , Mitochondrial Proteins/therapeutic use
5.
Saudi J Biol Sci ; 30(1): 103502, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36458097

ABSTRACT

Salmonella Typhi, a human-restricted Gram negative enterobacteriaceae, is the causative agent of typhoid fever in human being. The available serodiagnostic tools for the diagnosis of typhoid fever lack sensitivity and/or specificity. This study aimed to identify the immunoreactive proteins of S. Typhi that could help to develop improved diagnostic tools. Here, we performed immunoaffinity-based proteomic approach that uses charged columns to retrieve IgG and IgM antibodies from the plasma of typhoid patients followed by capture of S. Typhi proteins. These proteins were then characterized by mass spectrometry and bioinformatics tools. Using this approach, we identified 28 immunoreactive proteins of S. Typhi, in which 14 proteins were captured by IgG charged column and 4 proteins were captured by IgM column. We also identified 10 proteins (hlyE, rfbH, dapD, argI, glyA, pflB, trxB, groEL, tufA and pepD) captured by both columns. The prediction of antigenicity and immunogenicity resulted that 22 proteins were antigenic while 6 were non-antigenic on the scale of 0.4 threshold value of VaxiJen. These proteins successfully simulated the immune system in silico and in response higher amount of antibodies' titers were recorded in C-IMMSIM, confirming the immunogenic nature of these proteins. The identified proteins are of diverse nature and functions including those involved in virulence and pathogenesis, energy metabolism, cell development, biosynthesis of amino acids, regulatory functions and biosynthesis of cofactors. The findings of this study would be helpful in the development of improved vaccines and diagnostic tools for typhoid fever.

6.
Tuberculosis (Edinb) ; 138: 102286, 2023 01.
Article in English | MEDLINE | ID: mdl-36463715

ABSTRACT

Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health issue in Pakistan. Isoniazid is a first-line pro-drug that requires activation through an enzyme called catalase peroxidase, but is subject to widespread resistance, driven by mutations in katG and inhA genes and other loci with compensatory effects (e.g., ahpC). Here, we used whole genome sequencing data from 51 M. tuberculosis isolates collected from Khyber Pakhtunkhwa province (years 2016-2019; all isoniazid phenotypically resistant) to investigate the genetic diversity of mutations in isoniazid candidate genes. The most common mutations underlying resistance were katG S315T (37/51), fabG1 -15C>T (13/51; inhA promoter), and inhA -154G>A (7/51). Other less common mutations (n < 5) were also identified in katG (R128Q, V1A, W505*, A109T, D311G) and candidate compensatory genes ahpC (-54C>T, -51G>A) and oxyS (M249T). Using DynaMut2 software, the mutants exhibited various degrees of stability and flexibility on protein structures, with some katG mutations leading to a decrease in KatG protein flexibility. Overall, the characterisation of circulating isoniazid resistant-linked mutations will assist in drug resistant TB management and control activities in a highly endemic area of Pakistan.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Isoniazid/pharmacology , Antitubercular Agents/pharmacology , Pakistan/epidemiology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis/microbiology , Mutation , Catalase/genetics , Bacterial Proteins/genetics , Microbial Sensitivity Tests
7.
Trop Med Infect Dis ; 7(12)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36548685

ABSTRACT

Toxoplasmosis is a zoonotic parasitic disease caused by T. gondii, an obligate intracellular apcomplexan zoonotic parasite that is geographically worldwide in distribution. The parasite infects humans and all warm-blooded animals and is highly prevalent in various geographical regions of the world, including Pakistan. The current study addressee prevalence of Toxoplasma infection in women in various geographical regions, mapping of endemic division and t district of Khyber Pakhtunkhwa province through geographical information system (GIS) in order to locate endemic regions, monitor seasonal and annual increase in prevalence of infection in women patients. Setting: Tertiary hospitals and basic health care centers located in 7 divisions and 24 districts of Khyber Pakhtunkhwa (KP) province of Pakistan. During the current study, 3586 women patients from 7 divisions and 24 districts were clinically examined and screened for prevalence of T. gondii infection. Participants were screened for Toxoplasma infection using ICT and latex agglutination test (LAT) as initial screening assay, while iELISA (IgM, IgG) was used as confirmatory assay. Mapping of the studied region was developed by using ArcGIS 10.5. Spatial analyst tools were applied by using Kriging/Co-kriging techniques, followed by IDW (Inverse Distance Weight) techniques. Overall prevalence of T. gondii infection was found in 881 (24.56%) patients. A significant (<0.05) variation was found in prevalence of infection in different divisions and districts of the province. Prevalence of infection was significantly (<0.05) high 129 (30.07%) in Kohat Division, followed by 177 (29.06%), 80 (27.87%), 287 (26.72%), 81 (21.21%), 47 (21.07%), and 80 (13.71%) cases in Hazara Division, D.I Khan Division, Malakand Division, Mardan Division, Bannu Division, and Peshawar Division. Among various districts, a significant variation (<0.05) was found in prevalence of infection. Prevalence of infection was significantly (<0.05) high 49 (44.95%) in district Karak, while low (16 (10.81%) in district Nowshera. No significant (>0.05) seasonal and annual variation was found in prevalence of Toxoplasma infection. LAT, ICT and ELISA assays were evaluated for prevalence of infection, which significantly (<0.05) detected T. gondii antibodies. LAT, ICT and ELISA assays significantly (<0.05) detected infection, while no significant (>0.05) difference was found between positivity of LAT and ICT assays. A significant difference (<0.05) was found in positivity of Toxoplasma-specific (IgM), (IgG) and (IgM, IgG) immunoglobulin by ICT and ELISA assay. The current study provides comprehensive information about geographical distribution, seasonal and annual variation of Toxoplasmosis infection in various regions of Khyber Pakhtunkhwa province of Pakistan. Infection of T. gondii in women shows an alarming situation of disease transmission from infected animals in the studied region, which is not only a serious and potential threat for adverse pregnancy outcomes, but also cause socioeconomic burden and challenges for various public and animal health organizations in Pakistan and across the country.

8.
Pathogens ; 11(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365044

ABSTRACT

Control of the cattle tick Rhipicephalus (R.) microplus mainly relies on chemical acaricides and cypermethrin is the most widely used acaricide in Pakistan. Farmers frequently complain about its low efficacy, thus, the present study was designed to quantify the frequency of cypermethrin resistance in cattle ticks. Engorged female R. microplus were collected and tested for the efficacy of cypermethrin using the FAO-recommended larval packet test. Resistance factors (RF) were estimated at both the lethal concentration for 50% (LC50) and 99% (LC99) of ticks. Thirty-three samples were tested, of which 8/33 (24.24%) were classified as resistant based on the RF50, and all 33 were classified as resistant based on the RF99. In District Sargodha, when only the RF50 was considered, 45.5% of samples were classified as resistant, but at RF99, all tested samples were identified as resistant. In District Okara, the variation in RF50 estimates was 2.2-8.3 and variation in RF99 estimates was 10.6-1139.8. Similar results were found in District Attock, where variations in RF50 were 0.8-8.5 and RF99 ranged from 9-237.3. The study showed that cypermethrin resistance is prevalent in these three districts of Pakistan and is likely to be overestimated by classification based on the RF99.

9.
Sci Rep ; 12(1): 7703, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35545649

ABSTRACT

Tuberculosis, caused by Mycobacterium tuberculosis, is a high-burden disease in Pakistan, with multi-drug (MDR) and extensive-drug (XDR) resistance, complicating infection control. Whole genome sequencing (WGS) of M. tuberculosis is being used to infer lineages (strain-types), drug resistance mutations, and transmission patterns-all informing infection control and clinical decision making. Here we analyse WGS data on 535 M. tuberculosis isolates sourced across Pakistan between years 2003 and 2020, to understand the circulating strain-types and mutations related to 12 anti-TB drugs, as well as identify transmission clusters. Most isolates belonged to lineage 3 (n = 397; 74.2%) strain-types, and were MDR (n = 328; 61.3%) and (pre-)XDR (n = 113; 21.1%). By inferring close genomic relatedness between isolates (< 10-SNPs difference), there was evidence of M. tuberculosis transmission, with 55 clusters formed consisting of a total of 169 isolates. Three clusters consist of M. tuberculosis that are similar to isolates found outside of Pakistan. A genome-wide association analysis comparing 'transmitted' and 'non-transmitted' isolate groups, revealed the nusG gene as most significantly associated with a potential transmissible phenotype (P = 5.8 × 10-10). Overall, our study provides important insights into M. tuberculosis genetic diversity and transmission in Pakistan, including providing information on circulating drug resistance mutations for monitoring activities and clinical decision making.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Genome-Wide Association Study , Humans , Mutation , Pakistan/epidemiology , Tuberculosis/drug therapy , Tuberculosis/transmission , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/transmission
10.
Article in English | MEDLINE | ID: mdl-34239581

ABSTRACT

The development of green technology is creating great interest for researchers towards low-cost and environmentally friendly methods for the synthesis of nanoparticles. Copper oxide nanoparticles (CuO-NPs) attracted many researchers due to their electric, catalytic, optical, textile, photonic, monofluid, and pharmacological activities that depend on the shape and size of the nanoparticles. This investigation aims copper oxide nanoparticles synthesis using Aerva javanica plant leaf extract. Characterization of copper oxide nanoparticles synthesized by green route was performed by three different techniques: X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) reveals the crystalline morphology of CuO-NPs and the average crystal size obtained is 15 nm. SEM images showed the spherical nature of the particles and size is lying in the 15-23 nm range. FTIR analysis confirms the functional groups of active components present in the extract which are responsible for reducing and capping agents for the synthesis of CuO-NPs. The synthesized CuO-NPs were studied for their antimicrobial potential against different bacterial as well as fungal pathogens. The results indicated that CuO-NPs show maximum antimicrobial activities against all the selected bacterial and fungal pathogens. Antimicrobial activities of copper oxide nanoparticles were compared with standard drugs Norfloxacin and amphotericin B antibiotics. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of copper oxide nanoparticles were 128 µg/mL against all selected bacterial pathogens. MIC of fungus and minimum fungicidal concentration (MFC) of CuO-NPs were 160 µg/mL. Thus, CuO-NPs can be utilized as a broad-spectrum antimicrobial agent. The cytotoxic activity of the synthesized CuO-NPs suggested that toxicity was negligible at concentrations below 60 µg/mL.

11.
Animals (Basel) ; 11(6)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205748

ABSTRACT

Haemonchosis is a parasitic disease of small ruminants that adversely affects livestock production. Haemonchus contortus is one of the most prevalent nematode parasites that infect the abomasum of small ruminants. This parasite reduces milk production, overall growth and sometimes causes the death of the infected animals. The evaluation of the biocontrol potential of some abomasum bacterial isolates against H. contortus is investigated in this study. Out of which, three isolates-Comamonas testosteroni, Comamonas jiangduensis, Pseudomonas weihenstephanesis-show significant effect against the nematode L3, adult, and egg hatch inhibition assays. Various concentrations of metabolites from these bacteria are prepared and applied in different treatments compared with control. In the case of adult mortality assay, 50% metabolites of C. testosteroni and P. weihenstephanesis show 46% adult mortality, whereas C. jiangduensis shows 40% mortality. It is observed that decreasing the concentration of bacterial metabolite, lowers nematode mortality. The minimum nematode mortality rate is recorded at the lowest filtrates concentration of all the bacterial isolates. The same trend is observed in egg hatch inhibition assay, where the higher concentration of bacterial culture filtrates shows 100% inhibition of H. contortus egg. It is concluded that the effect of bacterial culture filtrates against H. contortus is dose-dependent for their activity against nematode L3, adult, and inhibition of egg hatchment.

12.
Biomolecules ; 11(2)2021 02 02.
Article in English | MEDLINE | ID: mdl-33540690

ABSTRACT

The need of non-toxic synthesis protocols for nanoparticles arises developing interest in biogenic approaches. The present project was focused on cost effective, environment congenial synthesis of Ag nanoparticles and their biological applications. Leaf and root extracts of Ricinus communis were used as a reducing and stabilizing agent in synthesis process. A Proposed mechanism in published literature suggested that Indole-3-acetic acid, l-valine, triethyl citrate, and quercetin-3-0-p-d-glucopyranoside phytoconstituents of Ricinus communis act as reducing and capping agents. The synthesized Ag NPs were characterized with a help X-ray diffractometer, Transmission electron microscopy, UV-Vis spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR). The XRD results inveterate the synthesis of pure nano size crystalline silver particles. The FTIR data revealed the possible functional groups of biomolecules involved in bio reduction and capping for efficient stabilization of silver nanoparticles. TEM analysis confirmed the almost spherical morphology of synthesized particles with mean size 29 and 38 nm for R-Ag-NPs (root) and L-Ag-NPs (leaf), respectively. The stability of synthesized nanoparticles was examined against heat and pH. It was observed that synthesized nanoparticles were stable up to 100 °C temperature and also showed stability in neutral, basic and slightly acidic medium (pH 05-06) for several months while below pH 5 were unstable. The synthesized silver nanoparticles had promising inhibition efficiency in multiple applications, including as bactericidal/fungicidal agents and Urease/Xanthine oxidase enzymes inhibitors. The cytotoxicity of synthesized nanoparticles shows that the concentration under 20 µg/mL were biologically compatible.


Subject(s)
Anti-Bacterial Agents/pharmacology , Green Chemistry Technology , Metal Nanoparticles/chemistry , Plant Leaves/metabolism , Plant Roots/metabolism , Ricinus/metabolism , Anti-Infective Agents/pharmacology , Hemolysis , Hot Temperature , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Nanomedicine/methods , Particle Size , Plant Extracts/pharmacology , Silver/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Temperature , Urease/metabolism , X-Ray Diffraction , Xanthine Oxidase/metabolism
13.
J Pak Med Assoc ; 70(1): 143-146, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31954040

ABSTRACT

Primitive epidermis develops the nail apparatus. Nails have a strong and inflexible nail plate at the end of each digit. Very few genes responsible for causing nonsyndromic form of nail dysplasia have been reported. In the current study, peripheral blood samples were collectedfrom three unaffected individuals and four affectedindividuals of Family A, while blood from two affected and three unaffected individuals were taken of Family B. Genotyping in both the families was performed using highly polymorphic short tandem repeat microsatellite markers. Sanger sequence of the FZD6 gene was performed and analysed for segregation analysis. A comparative modelling approach was used to predict the three-dimensional structures of FZD-6 protein using Modeller 4. Linkage analysis mapped a disease locus on chromosome 8q22.3, harbouring FZD6. Targeted Sanger sequencing of all the coding exons of FZD6 revealed a nonsense sequence variant in pedigree A, whereas a missense sequence variant in pedigree B. Finding and literature indicates the disease spectrum of Pakistani population with claw-shaped nail dysplasia, particularly in families of Pashtun origin.


Subject(s)
Frizzled Receptors/genetics , Genes, Recessive/genetics , Mutation, Missense/genetics , Nail Diseases , Adolescent , Adult , Child , Female , Humans , Male , Nail Diseases/genetics , Nail Diseases/pathology , Pedigree , Young Adult
14.
Saudi J Biol Sci ; 25(2): 320-325, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29472785

ABSTRACT

Honey is a natural food item produced by honey bees. Ancient civilizations considered honey as a God gifted prestigious product. Therefore, a huge literature is available regarding honey importance in almost all religions. Physically, honey is a viscous and jelly material having no specific color. Chemically, honey is a complex blend of many organic and inorganic compounds such as sugars, proteins, organic acids, pigments, minerals, and many other elements. Honey use as a therapeutic agent is as old as human civilization itself. Prior to the appearance of present day drugs, honey was conventionally used for treating many diseases. At this instant, the modern research has proven the medicinal importance of honey. It has broad spectrum anti-biotic, anti-viral and anti-fungal activities. Honey prevents and kills microbes through different mechanism such as elevated pH and enzyme activities. Till now, no synthetic compound that works as anti-bacterial, anti-viral and anti-fungal drugs has been reported in honey yet it works against bacteria, viruses and fungi while no anti-protozoal activity has been reported. Potent anti-oxidant, anti-inflammatory and anti-cancerous activities of honey have been reported. Honey is not only significant as anti-inflammatory drug that relieve inflammation but also protect liver by degenerative effects of synthetic anti-inflammatory drugs. This article reviews physico-chemical properties, traditional use of honey as medicine and mechanism of action of honey in the light of modern scientific medicinal knowledge.

15.
Microb Pathog ; 102: 160-165, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27914961

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway that ensures sufficient production of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH) by catalyzing the reduction of NADP+ to NADPH. Noteworthy, the latter mediates the production of reactive oxygen species (ROS) by phagocytic cells such as neutrophils and monocytes. Therefore, patients with severe forms of G6PD deficiency may present impaired NADPH oxidase activity and become susceptible to recurrent infections. This fact, highlights the importance to characterize the immunopathologic mechanisms underlying the susceptibility to infections in patients with G6PD deficiency. Here we report the first two cases of G6PD deficiency with Bacille Calmette-Guérin (BCG) adverse effect, besides jaundice, hemolytic anemia and recurrent infections caused by Staphylococcus aureus. The qualitative G6PD screening was performed and followed by oxidative burst analysis using flow cytometry. Genetic and in silico analyses were carried out by Sanger sequencing and mutation pathogenicity predicted using bioinformatics tools, respectively. Activated neutrophils and monocytes from patients displayed impaired oxidative burst. The genetic analysis revealed the novel missense mutation c.1157T>A/p.L386Q in G6PD. In addition, in silico analysis indicated that this mutation is pathogenic, thereby hampering the oxidative burst of neutrophils and monocytes from patients. Our data expand the clinical and genetic spectrum of G6PD deficiency, and suggest that impaired oxidative burst in this severe primary immune deficiency is an underlying immunopathologic mechanism that predisposes to mycobacterial infections.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/genetics , Amino Acid Substitution , BCG Vaccine/adverse effects , DNA Mutational Analysis , Genetic Association Studies , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase Deficiency/complications , Glucosephosphate Dehydrogenase Deficiency/immunology , Humans , Male , Models, Molecular , Monocytes/immunology , Monocytes/metabolism , Mutation, Missense , Mycobacterium bovis , Neutrophils/immunology , Neutrophils/metabolism , Oxidative Stress , Pedigree , Protein Conformation , Reactive Oxygen Species/metabolism , Respiratory Burst
16.
Toxicol Ind Health ; 33(4): 297-307, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27102427

ABSTRACT

Pesticides are one of the most potentially harmful chemicals introduced into the environment, and their adverse impacts on non-target organisms can be significant. The present study was conducted to shed light on effects of locally used insecticides chlorpyrifos (CPF) and lambda cyhalothrin (LCT) on oxidative stress biomarkers in human erythrocytes. The activity of catalase (CAT), superoxide dismutase (SOD), and protein contents as well as the levels of malondialdehyde (MDA) and osmotic fragility (OF) were measured in human erythrocytes exposed to CPF at concentrations of 0, 100, 500, 1000, and 2000 ppm and LCT at concentrations of 0, 100, 300, 600, and 800 ppm for 1 h and 3 h at 37°C. MDA levels and OF of erythrocytes were significantly higher in erythrocytes incubated with CPF and LCT at increasing concentrations of both insecticides and increased incubation time. However, erythrocyte CAT and SOD activities were decreased at all concentrations of CPF and LCT tested. Protein oxidation products were decreased at lower doses of CPF (100 and 500 ppm); at higher doses (1000 and 2000 ppm), total protein content was increased compared with control. In contrast LCT was associated with decreased in protein contents at all the concentrations. These results clearly demonstrated that CPF and LCT can induce oxidative stress in human erythrocytes ( in vitro).


Subject(s)
Chlorpyrifos/toxicity , Erythrocytes/drug effects , Fungicides, Industrial/toxicity , Hemolysis/drug effects , Insecticides/toxicity , Nitriles/toxicity , Oxidative Stress/drug effects , Pyrethrins/toxicity , Adult , Biomarkers/metabolism , Catalase/antagonists & inhibitors , Catalase/metabolism , Cholinesterase Inhibitors/toxicity , Erythrocytes/enzymology , Erythrocytes/metabolism , Female , Humans , In Vitro Techniques , Male , Malondialdehyde/metabolism , Osmolar Concentration , Osmotic Fragility/drug effects , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/metabolism , Young Adult
17.
Microb. Pathog. ; 102: 160-165, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13611

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway that ensures sufficient production of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH) by catalyzing the reduction of NADP-F to NADPH. Noteworthy, the latter mediates the production of reactive oxygen species (ROS) by phagocytic cells such as neutrophils and monocytes. Therefore, patients with severe forms of G6PD deficiency may present impaired NADPH oxidase activity and become susceptible to recurrent infections. This fact, highlights the importance to characterize the immunopathologic mechanisms underlying the susceptibility to infections in patients with G6PD deficiency. Here we report the first two cases of G6PD deficiency with Bacille Calmette-Guerin (BCG) adverse effect, besides jaundice, hemolytic anemia and recurrent infections caused by Staphylococcus aureus. The qualitative G6PD screening was performed and followed by oxidative burst analysis using flow cytometry. Genetic and in silico analyses were carried out by Sanger sequencing and mutation pathogenicity predicted using bioinformatics tools, respectively. Activated neutrophils and monocytes from patients displayed impaired oxidative burst. The genetic analysis revealed the novel missense mutation c.1157T>A/p.L386Q in G6PD. In addition, in silico analysis indicated that this mutation is pathogenic, thereby hampering the oxidative burst of neutrophils and monocytes from patients. Our data expand the clinical and genetic spectrum of G6PD deficiency, and suggest that impaired oxidative burst in this severe primary immune deficiency is an underlying immunopathologic mechanism that predisposes to mycobacterial infections.

18.
BMC Complement Altern Med ; 15: 59, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25879586

ABSTRACT

BACKGROUND: To determine the effect of flavonoids in conjunction with antibiotics in methicillin resistant Staphylococcus aureus (MRSA) a study was designed. The flavonoids included Rutin, Morin, Qurecetin while antibiotics included ampicillin, amoxicillin, cefixime, ceftriaxone, vancomycin, methicillin, cephradine, erythromycin, imipenem, sulphamethoxazole/trimethoprim, ciprofloxacin and levolfloxacin. Test antibiotics were mostly found resistant with only Imipenem and Erythromycin found to be sensitive against 100 MRSA clinical isolates and S. aureus (ATCC 43300). The flavonoids were tested alone and also in different combinations with selected antibiotics. METHODS: Antibiotics and flavonoids sensitivity assays were carried using disk diffusion method. The combinations found to be effective were sifted through MIC assays by broth macro dilution method. Exact MICs were determined using an incremental increase approach. Fractional inhibitory concentration indices (FICI) were determined to evaluate relationship between antibiotics and flavonoids is synergistic or additive. Potassium release was measured to determine the effect of antibiotic-flavonoids combinations on the cytoplasmic membrane of test bacteria. RESULTS: Antibiotic and flavonoids screening assays indicated activity of flavanoids against test bacteria. The inhibitory zones increased when test flavonoids were combined with antibiotics facing resistance. MICs of test antibiotics and flavonoids reduced when they were combined. Quercetin was the most effective flavonoid (MIC 260 µg/ml) while morin + rutin + quercetin combination proved most efficient with MIC of 280 + 280 + 140 µg/ml. Quercetin + morin + rutin with amoxicillin, ampicillin, cephradine, ceftriaxone, imipenem, and methicillin showed synergism, while additive relationship was indicated between morin + rutin and amoxicillin, cephradine, ceftriaxone, imipenem, and methicillin. Quercetin alone had an additive effect with ampicillin, cephradine, ceftriaxone, imipenem, and methicillin. Potassium leakage was highest for morin + rutin + quercetin that improved further in combination with imipenem. Morin and rutin alone had no activity but in combination showed activity against test bacteria. CONCLUSIONS: The flavonoids when used in combination with antibiotics were found to increase each other activity against test bacteria. The relationship between the flavonoids and antibiotics in most of the cases was additive. However in a few cases synergism was also observed. Flavonoids alone or in combinations also damaged bacterial cell membrane.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance/drug effects , Flavonoids/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Quercetin/pharmacology , Rutin/pharmacology , Drug Synergism , Humans , Methicillin/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...