Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(17): 19461-19480, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708276

ABSTRACT

Nile blue (NB) dye is a highly toxic substance that when discharged into sewage presents a significant risk to the environment and human health. Carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and their nanocomposites, offer considerable potential for eliminating hazardous pollutants from aqueous systems. In this study, we have successfully fabricated bare GO and rGO, and then, the rGO was decorated with silver (Ag) nanoparticles to develop the Ag-rGO composite. The as-prepared materials were characterized by various techniques, such as UV-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and scanning electron microscopy (SEM) to elucidate their structure, morphology, and chemical composition. The pollutant removal performance of the as-prepared materials was evaluated through a batch approach under the effect of various experimental variables for removal of NB dye from wastewater. As obvious, the Ag-rGO composite revealed exceptional performance for NB dye removal from wastewater, with a maximum removal percentage of 94% within 60 min, which is remarkably higher than those of the rGO (i.e., 59%) and GO (i.e., 22%), under the same experimental conditions. The adsorption data was analyzed with thermodynamics, isotherms, and kinetics models to better understand the physicochemical mechanisms driving the effective removal of the NB dye. The results reveal that Ag-rGO nanocomposite exhibit excellent adsorption ability as well as favorable thermodynamic and kinetic parameters for NB dye removal. It was also found that the presence of light enhanced the adsorptive removal of NB while using Ag-rGO as an adsorbent. The present study noted significant reusability of the Ag-rGO nanocomposite, likely due to minimal Ag leaching and/or the robust stability of the Ag-rGO. It is suggested that Ag-rGO-based hybrid materials could serve as promising candidates for efficiently adsorbing and catalytically removing various toxic pollutants from wastewater.

2.
Heliyon ; 10(7): e28290, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689953

ABSTRACT

In this work there was investigated the synergistic effect of the nanomaterials-the Montmorillonite (MMT) and the vanadium pentoxide (V2O5) on the polyvinyl alcohol (PVA)/starch composite. The composite films were prepared by the solvent casting method. The characterization of the composites showed that the addition of the MMT and the V2O5 to PVA/starch composite decreased the water solubility and water absorption capacity of the film. Both of the reinforcement materials enriched values of thermal conductivity and thermal stability of the composite. The TG/DTA and universal testing machine (UTM) analysis exhibited that MMT and V2O5 augmented the thermal robustness and tensile strength of composites and decreased the strain to break. It was also observed that greater MMT concentration accelerates mechanical strength deterioration of the film owing to agglomeration. The scanning electron microscopy (SEM) analysis reflected great change in the surface morphology of the films in the presence and absence of MMT and V2O5. This was due to the interaction amid constituents of the composite. The chemical interaction between the PVA, Starch, MMT and the V2O5 was also established via Fourier-transform infrared spectroscopy (FTIR) analysis, which revealed fluctuations in the absorbance position and intensity of the PVA/Starch. Antimicrobial activities against seven different cultures of bacteria (both-gram positive and -negative) and one fungus (Candida albicans), exposed that antimicrobial performance of the PVA amplified upon addition of the starch, MMT and V2O5, making these composites prospective candidates for the biodegradable packaging materials.

3.
Materials (Basel) ; 16(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676258

ABSTRACT

The presence of dyes in water stream is a major environmental problem that affects aquatic and human life negatively. Therefore, it is essential to remove dye from wastewater before its discharge into the water bodies. In this study, Banyan (Ficus benghalensis, F. benghalensis) tree leaves, a low-cost biosorbent, were used to remove brilliant green (BG), a cationic dye, from an aqueous solution. Batch model experiments were carried out by varying operational parameters, such as initial concentration of dye solution, contact time, adsorbent dose, and pH of the solution, to obtain optimum conditions for removing BG dye. Under optimum conditions, maximum percent removal of 97.3% and adsorption capacity (Qe) value of 19.5 mg/g were achieved (at pH 8, adsorbent dose 0.05 g, dye concentration 50 ppm, and 60 min contact time). The Langmuir and Freundlich adsorption isotherms were applied to the experimental data. The linear fit value, R2 of Freundlich adsorption isotherm, was 0.93, indicating its best fit to our experimental data. A kinetic study was also carried out by implementing the pseudo-first-order and pseudo-second-order kinetic models. The adsorption of BG on the selected biosorbent follows pseudo-second-order kinetics (R2 = 0.99), indicating that transfer of internal and external mass co-occurs. This study surfaces the excellent adsorption capacity of Banyan tree leaves to remove cationic BG dye from aqueous solutions, including tap water, river water, and filtered river water. Therefore, the selected biosorbent is a cost-effective and easily accessible approach for removing toxic dyes from industrial effluents and wastewater.

4.
Polymers (Basel) ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35054647

ABSTRACT

The current research focused on the super capacitive behavior of organic conducting polymer, i.e., polypyrrole (PPy) and its composites with gum arabic (GA) prepared via inverse emulsion polymerization. The synthesized composites material was analyzed by different analytical techniques, such as UV-visible, FTIR, TGA, XRD, and SEM. The UV-Vis and FTIR spectroscopy clearly show the successful insertion of GA into PPy matrix. The TGA analysis shows high thermal stability for composites than pure PPy. The XRD and SEM analysis show the crystalline and amorphous structures and overall morphology of the composites is more compact and mesoporous as compared to the pure PPy. The electrochemical properties of modified solid state supercapacitors established on pure polypyrrole (PPy), polypyrrole/gum arabic (PPy/GA) based composites were investigated through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). The specific capacitance of the PPy modified gold electrode is impressive (~168 F/g). The specific capacitance of PPy/GA 1 electrode has been increased to 368 F/g with a high energy density and power density (~73 Wh/kg), and (~599 W/kg) respectively.

5.
Polymers (Basel) ; 13(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34833345

ABSTRACT

An in-situ chemical oxidative method was used to effectively synthesize a promising supercapacitor material based on PPy/ZrO2 composites. The synthesized materials were characterized by different analytical techniques, such as UV/visible (UV/Vis) spectroscopy, Fourier-transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The inclusion of ZrO2 into the PPy matrix was verified by vibrational spectra and structural analyses. The (TGA) results showed that incorporating ZrO2 into the polymeric matrix improved its thermal stability. In addition, the electrochemical properties of the synthesizedmaterials were investigated byusing cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD). The PPy/ZrO2 composite demonstrated excellent super capacitive performance, and high specific capacity of 337.83 F/g, with an exceedingly high energy density of 187.68 Wh/kg at a power density of 1000 W/kg. The composite materials maintain good stability after 1000 charge and discharge cycles, with 85% capacitance retention. The PPy/ZrO2 possesses a high capacitance, an attractive micro-morphology, and a simple synthesis method. The findings indicate that the PPy/ZrO2 composite could be a promising electrode material for high-performance supercapacitor applications.

6.
Nanomaterials (Basel) ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34685066

ABSTRACT

Partially biodegradable polymer nanocomposites Poly(3-Hydroxybutyrate) (PHB)/MultiwalledCarbon Nanotubes (MWCNTs)/Poly(Methyl Methacrylate) (PMMA)and non-biodegradable nanocomposites (MWCNTs/PMMA) were synthesized, and their thermal, electrical, and ammonia-sensing properties were compared. MWCNTs were chemically modified to ensure effective dispersion in the polymeric matrix. Pristine MWCNTs (p-MWCNTs) were functionalized with -COOH (a-MWCNTs) and amine groups (f-MWCNTs). Then, PHB grafted multiwalled carbon nanotubes (g-MWNTs) were prepared by a 'grafting to' technique. The p-MWCNTs, a-MWCNTs, f-MWCNTs, and g-MWCNTs were incorporated into the PMMA matrix and PMMA/PHB blend system by solution mixing. The PHB/f-MWCNTs/PMMA blend system showed good thermal properties among all synthesized nanocomposites. Results from TGA and dTGA analysis for PHB/f-MWCNTs/PMMA showed delay in T5 (about 127 °C), T50 (up to 126 °C), and Tmax (up to 65 °C) as compared to neat PMMA. Higher values of frequency capacitance were observed in nanocomposites containing f-MWCNTs and g-MWCNTs as compared to nanocomposites containing p-MWCNTs and a-MWCNTs. This may be attributed to their excellent interaction and good dispersion in the polymeric blend. Analysis of ammonia gas-sensing data showed that PHB/g-MWCNTs/PMMA nanocomposites exhibited good sensitivity (≈100%) and excellent repeatability with a constant response. The calculated limit of detection (LOD) is 0.129 ppm for PHB/g-MWCNTs/PMMA, while that of all other nanocomposites is above 40 ppm.

7.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198921

ABSTRACT

Electrocatalytic materials offer numerous benefits due to their wide range of applications. In this study, a polyol technique was used to synthesize PdNi nanoparticles (NPs) with different percent atomic compositions (Pd = 50 to 90%) to explore their catalytic efficiency. The produced nanoparticles were characterized using X-ray diffraction (XRD) and electrochemical investigations. According to XRD measurements, the synthesized NPs were crystalline in nature, with crystallite sizes of about 2 nm. The electrochemical properties of the synthesized NPs were studied in alkaline solution through a rotating ring-disk electrode (RRDE) technique of cyclic voltammetry. The PdNi nanoparticles supported on carbon (PdNi/C) were used as electrocatalysts and their activity and stability were compared with the homemade Pd/C and Pt/C. In alkaline solution, PdNi/C electrocatalysts showed improved oxygen reduction catalytic activity over benchmark Pd/C and Pt/C electrocatalysts in all composition ratios. Furthermore, stability experiments revealed that PdNi 50:50 is more stable in alkaline solution than pure Pd and other PdNi compositions.

8.
Polymers (Basel) ; 14(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35012027

ABSTRACT

The present study is aimed at the synthesis and exploring the efficiency of a novel activated carbon incorporated polyindole (AC@PIN) composite for adsorptive removal of Malachite Green (MG) dye from aqueous solution. An AC@PIN hybrid material was prepared by in situ chemical oxidative polymerization. The physico-chemical characteristics of the AC@PIN composite were assessed using Fourier-transform infrared spectrometer, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet visible spectroscopy, and determination of point of zero charge (pHPZC). A series of adsorption studies was conducted to evaluate the influence of operational parameters such as pH, contact time, initial dye concentration, AC@PIN dosage, and temperature on dye adsorption behavior of developed composite. A maximum dye removal percentage (97.3%) was achieved at the pH = 10, AC@PIN dosage = 6.0 mg, initial dye concentration 150 mg L-1, and temperature = 20 °C. The kinetic studies demonstrated that the adsorption of MG on AC@PIN followed pseudo-second-order model (R2 ≥ 0.99). Meanwhile, Langmuir isotherm model was founded to be the best isotherm model to describe the adsorption process. Finally, the recyclability test revealed that the composite exhibits good recycle efficiency and is stable after 5 cycles. The obtained results suggest that AC@PIN composite could be a potential candidate for the removal of MG from wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...