Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Viruses ; 13(2)2021 02 19.
Article in English | MEDLINE | ID: mdl-33669530

ABSTRACT

A reverse genetic system for avian paramyxovirus type-3 (APMV-3) strain Wisconsin was created and the infectious virus was recovered from a plasmid-based viral antigenomic cDNA. Green fluorescent protein (GFP) gene was cloned into the recombinant APMV-3 genome as a foreign gene. Stable expression of GFP by the recovered virus was confirmed for at least 10 consecutive passages. APMV-3 strain Wisconsin was evaluated against APMV-3 strain Netherlands and APMV-1 strain LaSota as a vaccine vector. The three viral vectors expressing GFP as a foreign protein were compared for level of GFP expression level, growth rate in chicken embryo fibroblast (DF-1) cells, and tissue distribution and immunogenicity in specific pathogen-free (SPF) day-old chickens. APMV-3 strain Netherlands showed highest growth rate and GFP expression level among the three APMV vectors in vitro. APMV-3 strain Wisconsin and APMV-1 strain LaSota vectors were mainly confined to the trachea after vaccination of day-old SPF chickens without any observable pathogenicity, whereas APMV-3 strain Netherlands showed wide tissue distribution in different body organs (brain, lungs, trachea, and spleen) with mild observable pathogenicity. In terms of immunogenicity, both APMV-3 strain-vaccinated groups showed HI titers two to three fold higher than that induced by APMV-1 strain LaSota vaccinated group. This study offers a novel paramyxovirus vector (APMV-3 strain Wisconsin) which can be used safely for vaccination of young chickens as an alternative for APMV-1 strain LaSota vector.


Subject(s)
Avulavirus Infections/veterinary , Avulavirus/genetics , Genetic Vectors/genetics , Poultry Diseases/virology , Viral Vaccines/genetics , Animals , Avulavirus/metabolism , Avulavirus Infections/prevention & control , Avulavirus Infections/virology , Chickens , Genetic Vectors/metabolism , Poultry Diseases/prevention & control , Reverse Genetics , Specific Pathogen-Free Organisms , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Wisconsin
4.
Vet Res ; 50(1): 12, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30744668

ABSTRACT

Infectious bronchitis virus (IBV) causes a major disease problem for the poultry industry worldwide. The currently used live-attenuated vaccines have the tendency to mutate and/or recombine with circulating field strains resulting in the emergence of vaccine-derived variant viruses. In order to circumvent these issues, and to develop a vaccine that is more relevant to Egypt and its neighboring countries, a recombinant avirulent Newcastle disease virus (rNDV) strain LaSota was constructed to express the codon-optimized S glycoprotein of the Egyptian IBV variant strain IBV/Ck/EG/CU/4/2014 belonging to GI-23 lineage, that is prevalent in Egypt and in the Middle East. A wild type and two modified versions of the IBV S protein were expressed individually by rNDV. A high level of S protein expression was detected in vitro by Western blot and immunofluorescence analyses. All rNDV-vectored IBV vaccine candidates were genetically stable, slightly attenuated and showed growth patterns comparable to that of parental rLaSota virus. Single-dose vaccination of 1-day-old SPF White Leghorn chicks with the rNDVs expressing IBV S protein provided significant protection against clinical disease after IBV challenge but did not show reduction in tracheal viral shedding. Single-dose vaccination also provided complete protection against virulent NDV challenge. However, prime-boost vaccination using rNDV expressing the wild type IBV S protein provided better protection, after IBV challenge, against clinical signs and significantly reduced tracheal viral shedding. These results indicate that the NDV-vectored IBV vaccines are promising bivalent vaccine candidates to control both infectious bronchitis and Newcastle disease in Egypt.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Infectious bronchitis virus/immunology , Newcastle disease virus/immunology , Poultry Diseases/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Cell Line , Coronavirus Infections/prevention & control , Egypt , Genetic Vectors/immunology , Infectious bronchitis virus/genetics , Newcastle disease virus/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
5.
Sci Rep ; 8(1): 8952, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29895833

ABSTRACT

SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Gene Products, env , Genetic Vectors , Immunity, Mucosal , Newcastle disease virus , SAIDS Vaccines , Simian Immunodeficiency Virus , Animals , Chickens , Female , Gene Products, env/genetics , Gene Products, env/immunology , Guinea Pigs , HEK293 Cells , Humans , SAIDS Vaccines/genetics , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology
6.
J Virol ; 92(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29925653

ABSTRACT

The poliovirus eradication initiative has spawned global immunization infrastructure and dramatically decreased the prevalence of the disease, yet the original virus eradication goal has not been met. The suboptimal properties of the existing vaccines are among the major reasons why the program has repeatedly missed eradication deadlines. Oral live poliovirus vaccine (OPV), while affordable and effective, occasionally causes the disease in the primary recipients, and the attenuated viruses rapidly regain virulence and can cause poliomyelitis outbreaks. Inactivated poliovirus vaccine (IPV) is safe but expensive and does not induce the mucosal immunity necessary to interrupt virus transmission. While the need for a better vaccine is widely recognized, current efforts are focused largely on improvements to the OPV or IPV, which are still beset by the fundamental drawbacks of the original products. Here we demonstrate a different design of an antipoliovirus vaccine based on in situ production of virus-like particles (VLPs). The poliovirus capsid protein precursor, together with a protease required for its processing, are expressed from a Newcastle disease virus (NDV) vector, a negative-strand RNA virus with mucosal tropism. In this system, poliovirus VLPs are produced in the cells of vaccine recipients and are presented to their immune systems in the context of active replication of NDV, which serves as a natural adjuvant. Intranasal administration of the vectored vaccine to guinea pigs induced strong neutralizing systemic and mucosal antibody responses. Thus, the vectored poliovirus vaccine combines the affordability and efficiency of a live vaccine with absolute safety, since no full-length poliovirus genome is present at any stage of the vaccine life cycle.IMPORTANCE A new, safe, and effective vaccine against poliovirus is urgently needed not only to complete the eradication of the virus but also to be used in the future to prevent possible virus reemergence in a postpolio world. Currently, new formulations of the oral vaccine, as well as improvements to the inactivated vaccine, are being explored. In this study, we designed a viral vector with mucosal tropism that expresses poliovirus capsid proteins. Thus, poliovirus VLPs are produced in vivo, in the cells of a vaccine recipient, and are presented to the immune system in the context of vector virus replication, stimulating the development of systemic and mucosal immune responses. Such an approach allows the development of an affordable and safe vaccine that does not rely on the full-length poliovirus genome at any stage.


Subject(s)
Genetic Vectors , Newcastle disease virus/genetics , Poliomyelitis/prevention & control , Poliovirus Vaccines/immunology , Poliovirus/genetics , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies, Viral/blood , Capsid Proteins/genetics , Capsid Proteins/immunology , Guinea Pigs , Immunity, Mucosal , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Newcastle disease virus/immunology , Newcastle disease virus/physiology , Poliomyelitis/immunology , Poliomyelitis/virology , Poliovirus/enzymology , Poliovirus/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/adverse effects , Poliovirus Vaccine, Inactivated/genetics , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccines/adverse effects , Poliovirus Vaccines/standards , Vaccination , Vaccines, Live, Unattenuated/administration & dosage , Vaccines, Live, Unattenuated/adverse effects , Vaccines, Live, Unattenuated/genetics , Vaccines, Live, Unattenuated/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/adverse effects , Vaccines, Virus-Like Particle/genetics
7.
Curr Protoc Microbiol ; 48: 15H.4.1-15H.4.15, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29512114

ABSTRACT

Poliovirus is a prototype member of the Enterovirus genus of the Picornaviridae family of small positive strand RNA viruses, which include important human and animal pathogens. Quantitative assessment of viral replication is very important for investigation of the virus biology and the development of anti-viral strategies. The poliovirus genome structure allows replacement of structural genes with a reporter protein, such as a luciferase or a fluorescent protein, whose signals can be detected and quantified in vivo, thus permitting observation of replication kinetics in live cells. This paper presents protocols for poliovirus replicon RNA production, purification, packaging and transfection, as well as techniques for monitoring Renilla luciferase replication signal in living cells. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Poliovirus/physiology , Replicon , Transfection/methods , Virology/methods , Virus Assembly , Virus Replication , Animals , DNA Replication , Genome, Viral , Humans , Poliomyelitis/virology , Poliovirus/genetics , RNA, Viral/genetics , RNA, Viral/metabolism
8.
Infect Genet Evol ; 53: 7-14, 2017 09.
Article in English | MEDLINE | ID: mdl-28495648

ABSTRACT

Avian infectious bronchitis virus (IBV) is highly prevalent in chicken populations and is responsible for severe economic losses to poultry industry worldwide. In this study, we report the complete genome sequences of two IBV field strains, CU/1/2014 and CU/4/2014, isolated from vaccinated chickens in Egypt in 2014. The genome lengths of the strains CU/1/2014 and CU/4/2014 were 27,615 and 27,637 nucleotides, respectively. Both strains have a common genome organization in the order of 5'-UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-UTR-poly(A) tail-3'. Interestingly, strain CU/1/2014 showed a novel 15-nt deletion in the 4b-4c gene junction region. Phylogenetic analysis of the full S1 genes showed that the strains CU/1/2014 and CU/4/2014 belonged to IBV genotypes GI-1 lineage and GI-23 lineage, respectively. The genome of strain CU/1/2014 is closely related to vaccine strain H120 but showed genome-wide point mutations that lead to 27, 14, 11, 1, 1, 2, 2, and 2 amino acid differences between the two strains in 1a, 1b, S, 3a, M, 4b, 4c, and N proteins, respectively, suggesting that strain CU/1/2014 is probably a revertant of the vaccine strain H120 and evolved by accumulation of point mutations. Recombination analysis of strain CU/4/2014 showed evidence for recombination from at least three different IBV strains, namely, the Italian strain 90254/2005 (QX-like strain), 4/91, and H120. These results indicate the continuing evolution of IBV field strains by genetic drift and by genetic recombination leading to outbreaks in the vaccinated chicken populations in Egypt.


Subject(s)
Coronavirus Infections/veterinary , Genome, Viral , Infectious bronchitis virus/genetics , Poultry Diseases/epidemiology , RNA, Viral/genetics , Reassortant Viruses/genetics , Recombination, Genetic , Animals , Chickens , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Egypt/epidemiology , Genetic Drift , Genome Size , Genotype , Infectious bronchitis virus/classification , Infectious bronchitis virus/isolation & purification , Open Reading Frames , Phylogeny , Poultry Diseases/transmission , Poultry Diseases/virology , Prevalence , Reassortant Viruses/classification , Reassortant Viruses/isolation & purification , Whole Genome Sequencing
9.
J Gen Virol ; 97(2): 287-292, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26586083

ABSTRACT

Newcastle disease is a highly contagious and economically important disease of poultry. Low-virulence Newcastle disease virus (NDV) strains such as B1 and LaSota have been used as live vaccines, with a proven track record of safety and efficacy. However, these vaccines do not completely prevent infection or virus shedding. Therefore, there is a need to enhance the immunogenicity of these vaccine strains. In this study, the effect of mutations in the conserved tyrosine residues of the F protein of vaccine strain LaSota was investigated. Our results showed that substitution of tyrosine at position 527 by alanine resulted in a hyperfusogenic virus with increased replication and immunogenicity. Challenge study with highly virulent NDV strain Texas GB showed that immunization of chickens with Y527A mutant virus provided 100% protection and no shedding of the challenge virus. This study suggests that the strain LaSota harbouring the Y527A mutation may represent a more efficacious vaccine.


Subject(s)
Mutation, Missense , Newcastle disease virus/immunology , Newcastle disease virus/physiology , Viral Fusion Proteins/metabolism , Viral Vaccines/immunology , Virus Internalization , Virus Replication , Animals , Chickens , Newcastle Disease/prevention & control , Poultry Diseases/prevention & control , Survival Analysis , Texas , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Fusion Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
10.
J Virol ; 90(3): 1682-6, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26581986

ABSTRACT

Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp160/immunology , Immunization Schedule , Vaccination/methods , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/blood , Drug Carriers , Enzyme-Linked Immunosorbent Assay , Female , Genetic Vectors , Guinea Pigs , HIV Antibodies/blood , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp160/genetics , Immunoglobulin G/blood , Injections, Intramuscular , Neutralization Tests , Newcastle disease virus/genetics , Th1 Cells/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , env Gene Products, Human Immunodeficiency Virus/genetics
11.
mBio ; 6(4): e01005, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26199332

ABSTRACT

UNLABELLED: Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. IMPORTANCE: A safe and effective vaccine that can induce both systemic and mucosal immune responses is needed to control HIV-1. In this study, we showed that coexpression of Env and Gag proteins of HIV-1 performed using a single Newcastle disease virus (NDV) vector led to the formation of HIV-1 virus-like particles (VLPs). Immunization of guinea pigs with recombinant NDVs (rNDVs) elicited potent long-lasting systemic and mucosal immune responses to HIV. Additionally, the rNDVs were efficient in inducing cellular immune responses to HIV and protective immunity to challenge with vaccinia viruses expressing HIV Env and Gag in mice. These results suggest that the use of a single NDV expressing Env and Gag proteins simultaneously is a novel strategy to develop a safe and effective vaccine against HIV.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/blood , HIV-1/immunology , Immunity, Cellular , Newcastle disease virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Administration, Mucosal , Animals , Disease Models, Animal , Drug Carriers/administration & dosage , Genetic Vectors , Guinea Pigs , HIV-1/genetics , Mice , Serum/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccinia/prevention & control , Vaccinia virus/genetics , Vaccinia virus/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics
12.
Hum Vaccin Immunother ; 11(2): 504-15, 2015.
Article in English | MEDLINE | ID: mdl-25695657

ABSTRACT

The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8(+) T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4(+) T cells. The level of Gag-specific CD8(+) and CD4(+) T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins.


Subject(s)
AIDS Vaccines/immunology , Gene Products, env/immunology , HIV-1/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Animals , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Drug Carriers/administration & dosage , Female , Gene Products, env/administration & dosage , Gene Products, env/genetics , Guinea Pigs , HIV Antibodies/blood , HIV-1/genetics , Immunity, Cellular , Immunity, Mucosal , Interferon-gamma/metabolism , Mice , Newcastle disease virus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , gag Gene Products, Human Immunodeficiency Virus/administration & dosage , gag Gene Products, Human Immunodeficiency Virus/genetics
13.
J Virol ; 88(20): 11924-32, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25100852

ABSTRACT

Hepatitis E virus (HEV) causes both endemic and epidemic human hepatitis by fecal-oral transmission in many parts of the world. Zoonotic transmission of HEV from animals to humans has been reported. Due to the lack of an efficient cell culture system, the molecular mechanisms of HEV infection remain largely unknown. In this study, we found that HEV replication in hepatoma cells inhibited poly(I·C)-induced beta interferon (IFN-ß) expression and that the HEV open reading frame 1 (ORF1) product was responsible for this inhibition. Two domains, X and the papain-like cysteine protease domain (PCP), of HEV ORF1 were identified as the putative IFN antagonists. When overexpressed in HEK293T cells, the X domain (or macro domain) inhibited poly(I·C)-induced phosphorylation of interferon regulatory factor 3 (IRF-3), which is the key transcription factor for IFN induction. The PCP domain was shown to have deubiquitinase activity for both RIG-I and TBK-1, whose ubiquitination is a key step in their activation in poly(I·C)-induced IFN induction. Furthermore, replication of a HEV replicon containing green fluorescent protein (GFP) (E2-GFP) in hepatoma cells led to impaired phosphorylation of IRF-3 and reduced ubiquitination of RIG-I and TBK-1, which confirmed our observations of X and PCP inhibitory effects in HEK293T cells. Altogether, our study identified the IFN antagonists within the HEV ORF1 polyprotein and expanded our understanding of the functions of several of the HEV ORF1 products, as well as the mechanisms of HEV pathogenesis. Importance: Type I interferons (IFNs) are important components of innate immunity and play a crucial role against viral infection. They also serve as key regulators to evoke an adaptive immune response. Virus infection can induce the synthesis of interferons; however, viruses have evolved many strategies to antagonize the induction of interferons. There is little knowledge about how hepatitis E virus (HEV) inhibits induction of host IFNs, though the viral genome was sequenced more than 2 decades ago. This is the first report of identification of the potential IFN antagonists encoded by HEV. By screening all the domains in the open reading frame 1 (ORF1) polyprotein, we identified two IFN antagonists and performed further research to determine how and at which step in the IFN induction pathway they antagonize host IFN induction. Our work provides valuable information about HEV-cell interaction and pathogenesis.


Subject(s)
Hepatitis E virus/physiology , Interferon Type I/antagonists & inhibitors , Open Reading Frames , Base Sequence , Blotting, Western , DNA Primers , HEK293 Cells , Humans , Interferon Type I/biosynthesis , Phosphorylation , Ubiquitination , Viral Proteins/physiology
14.
Vaccine ; 32(28): 3555-63, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24793943

ABSTRACT

Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). Currently, modified live ILTV vaccines are used to control ILT infections. However, the live ILTV vaccines can revert to virulence after bird-to-bird passage and are capable of establishing latent infections, suggesting the need to develop safer vaccines against ILT. We have evaluated the role of three major ILTV surface glycoproteins, namely, gB, gC, and gD in protection and immunity against ILTV infection in chickens. Using reverse genetics approach, three recombinant Newcastle disease viruses (rNDVs) designated rNDV gB, rNDV gC, and rNDV gD were generated, each expressing gB, gC, and gD, respectively, of ILTV. Chickens received two immunizations with rNDVs alone (gB, gC, and gD) or in combination (gB+gC, gB+gD, gC+gD, and gB+gC+gD). Immunization with rNDV gD induced detectable levels of neutralizing antibodies with the magnitude of response greater than the rest of the experimental groups including those vaccinated with commercially available vaccines. The birds immunized with rNDV gD showed complete protection against virulent ILTV challenge. The birds immunized with rNDV gC alone or multivalent vaccines consisting of combination of rNDVs displayed partial protection with minimal disease and reduced replication of challenge virus in trachea. Immunization with rNDV gB neither reduced the severity of the disease nor the replication of challenge virus in trachea. The superior protective efficacy of rNDV gD vaccine compared to rNDV gB or rNDV gC vaccine was attributed to the higher levels of envelope incorporation and infected cell surface expression of gD than gB or gC. Our results suggest that rNDV expressing gD is a safe and effective bivalent vaccine against NDV and ILTV.


Subject(s)
Herpesviridae Infections/prevention & control , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Poultry Diseases/prevention & control , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Chickens , Genetic Vectors , Hemagglutination Inhibition Tests , Herpesvirus 1, Gallid , Neutralization Tests , Newcastle disease virus/genetics , Trachea/pathology , Viral Envelope Proteins/genetics
15.
PLoS One ; 8(10): e75456, 2013.
Article in English | MEDLINE | ID: mdl-24130713

ABSTRACT

Avian paramyxoviruses (APMV) serotypes 1-9 are frequently isolated from domestic and wild birds worldwide. APMV-1 (also called Newcastle disease virus, NDV) is attenuated in non-human primates and is being developed as a candidate human vaccine vector. The vector potential of the other serotypes was unknown. In the present study, we evaluated nine different biologically- or recombinantly-derived APMV strains for the ability to replicate and cause disease in rhesus macaque model. Five of the viruses were: biologically-derived wild type (wt) APMV-2, -3, -5, -7 and -9. Another virus was a recombinant (r) version of wt APMV-4. The remaining three viruses were versions of wt rAPMV-2, -4 and -7 in which the F cleavage site had been modified to be multi-basic. Rhesus macaques were inoculated intranasally and intratracheally and monitored for clinical disease, virus shedding from the upper and lower respiratory tract, and seroconversion. Virus shedding was not detected for wt APMV-5. Very limited shedding was detected for wt rAPMV-4 and modified rAPMV-4, and only in a subset of animals. Shedding by the other viruses was detected in every infected animal, and usually from both the upper and lower respiratory tract. In particular, shedding over a number of days in every animal was observed for modified rAPMV-2, wt APMV-7, and modified rAPMV-7. Modification of the F protein cleavage site appeared to increase shedding by wt rAPMV-2 and marginally by wt rAPMV-4. All APMVs except wt APMV-5 induced a virus-specific serum antibody response in all infected animals. None of the animals exhibited any clinical disease signs. These results indicate that APMVs 2, 3, 4, 7, and 9 are competent to infect non-human primates, but are moderately-to-highly restricted, depending on the serotype. This suggests that they are not likely to significantly infect primates in nature, and represent promising attenuated candidates for vector development.


Subject(s)
Avulavirus Infections/immunology , Avulavirus/pathogenicity , Animals , Avulavirus/classification , Avulavirus/immunology , Chick Embryo , Chlorocebus aethiops , Macaca mulatta , Vero Cells
16.
PLoS One ; 8(10): e78521, 2013.
Article in English | MEDLINE | ID: mdl-24098600

ABSTRACT

The development of a vaccine against human immunodeficiency virus-1 (HIV-1) capable of inducing broad humoral and cellular responses at both the systemic and mucosal levels will be critical for combating the global AIDS epidemic. We previously demonstrated the ability of Newcastle disease virus (NDV) as a vaccine vector to express oligomeric Env protein gp160 and induce potent humoral and mucosal immune responses. In the present study, we used NDV vaccine strain LaSota as a vector to compare the biochemical and immunogenic properties of vector-expressed gp160, gp120, and two versions of gp140 (a derivative of gp160 made by deleting the transmembrane and cytoplasmic domains), namely: gp140L, which contained the complete membrane-proximal external region (MPER), and gp140S, which lacks the distal half of MPER. We show that, similar to gp160, NDV-expressed gp140S and gp120, but not gp140L, formed higher-order oligomers that retained recognition by conformationally sensitive monoclonal antibodies. Immunization of guinea pigs by the intranasal route with rLaSota/gp140S resulted in significantly greater systemic and mucosal antibody responses compared to the other recombinants. Immunization with rLaSota/140S, rLaSota/140L rLaSota/120 resulted in mixed Th1/Th2 immune responses as compared to Th1-biased immune responses induced by rLaSota/160. Importantly, rLaSota/gp140S induced neutralizing antibody responses to homologous HIV-1 strain BaL.26 and laboratory adapted HIV-1 strain MN.3 that were stronger than those elicited by the other NDV recombinants. Additionally, rLaSota/gp140S induced greater CD4+ and CD8+ T-cell responses in mice. These studies illustrate that rLaSota/gp140S is a promising vaccine candidate to elicit potent mucosal, humoral and cellular immune responses to the HIV-1 Env protein.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Viral/biosynthesis , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp160/immunology , HIV Infections/prevention & control , HIV-1/immunology , Newcastle disease virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Gene Expression , Genetic Vectors , Guinea Pigs , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp160/genetics , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , Humans , Immunity, Humoral , Immunity, Mucosal , Mice , Mice, Inbred BALB C , Protein Engineering , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccines, Attenuated , env Gene Products, Human Immunodeficiency Virus/genetics
17.
J Virol ; 87(18): 10083-93, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23843643

ABSTRACT

The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.


Subject(s)
Newcastle disease virus/physiology , Viral Fusion Proteins/metabolism , Virus Replication , Amino Acid Substitution , Animals , Cell Line , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Newcastle disease virus/pathogenicity , Sequence Deletion , Viral Fusion Proteins/genetics , Virulence
18.
J Virol ; 86(7): 3828-38, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22258248

ABSTRACT

We constructed a reverse genetics system for avian paramyxovirus serotype 7 (APMV-7) to investigate the role of the fusion F glycoprotein in tissue tropism and virulence. The AMPV-7 F protein has a single basic residue arginine (R) at position -1 in the F cleavage site sequence and also is unusual in having alanine at position +2 (LPSSR↓FA) (underlining indicates the basic amino acids at the F protein cleavage site, and the arrow indicates the site of cleavage.). APMV-7 does not form syncytia or plaques in cell culture, but its replication in vitro does not depend on, and is not increased by, added protease. Two mutants were successfully recovered in which the cleavage site was modified to mimic sites that are found in virulent Newcastle disease virus isolates and to contain 4 or 5 basic residues as well as isoleucine in the +2 position: (RRQKR↓FI) or (RRKKR↓FI), named Fcs-4B or Fcs-5B, respectively. In cell culture, one of the mutants, Fcs-5B, formed protease-independent syncytia and grew to 10-fold-higher titers compared to the parent and Fcs-4B viruses. This indicated the importance of the single additional basic residue (K) at position -3. Syncytium formation and virus yield of the Fcs-5B virus was impaired by the furin inhibitor decanoyl-RVKR-CMK, whereas parental APMV-7 was not affected. APMV-7 is avirulent in chickens and is limited in tropism to the upper respiratory tract of 1-day-old and 2-week-old chickens, and these characteristics were unchanged for the two mutant viruses. Thus, the acquisition of furin cleavability by APMV-7 resulted in syncytium formation and increased virus yield in vitro but did not alter virus yield, tropism, or virulence in chickens.


Subject(s)
Furin/metabolism , Paramyxoviridae Infections/veterinary , Paramyxoviridae/physiology , Paramyxoviridae/pathogenicity , Poultry Diseases/virology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virus Replication , Amino Acid Motifs , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Chickens , Molecular Sequence Data , Mutation , Organ Specificity , Paramyxoviridae/genetics , Paramyxoviridae Infections/enzymology , Paramyxoviridae Infections/virology , Poultry Diseases/enzymology , Protein Processing, Post-Translational , Viral Fusion Proteins/chemistry , Virulence
19.
J Virol ; 86(5): 2501-11, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22205748

ABSTRACT

The role of N-linked glycosylation of the Newcastle disease virus (NDV) fusion (F) protein in viral replication and pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 471, and 541 (sites Ng1 to Ng6, respectively). The sites at Ng2 and Ng5 are present in heptad repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-glycosylation site was eliminated individually by replacing asparagine (N) with glutamine (Q), and a double mutant (Ng2 + 5) involving the two HR domains was also made. Each mutant was successfully recovered by reverse genetics except for the one involving Ng6, which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, and Ng5 resulted in modestly reduced multicycle growth in vitro. These three single mutations were also the most attenuating in eggs and 1-day-old chicks and were associated with decreased replication and spread in 2-week-old chickens. In contrast, the combination of the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated >100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein on NDV pathobiology and suggest that the N-glycans in HR1 and HR2 coordinately downregulate viral fusion and virulence.


Subject(s)
Newcastle Disease/virology , Newcastle disease virus/physiology , Newcastle disease virus/pathogenicity , Poultry Diseases/virology , Sequence Deletion , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology , Animals , Antibodies, Viral/immunology , Chickens , Glycosylation , Newcastle Disease/immunology , Newcastle disease virus/genetics , Newcastle disease virus/immunology , Poultry Diseases/immunology , Repetitive Sequences, Nucleic Acid , Viral Fusion Proteins/genetics , Virulence , Virus Replication
20.
J Virol ; 85(20): 10529-41, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21849467

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/blood , HIV Envelope Protein gp160/immunology , HIV-1/immunology , Immunity, Mucosal , Newcastle disease virus/genetics , AIDS Vaccines/genetics , Animals , Drug Carriers , Female , Genetic Vectors , Guinea Pigs , HIV Envelope Protein gp160/genetics , HIV-1/genetics , Immunization, Secondary/methods , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...