Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 976385, 2022.
Article in English | MEDLINE | ID: mdl-36299886

ABSTRACT

Natural substances originating from plants have long been used to treat neurodegenerative disorders (NDs). Parkinson's disease (PD) is a ND. The deterioration and subsequent cognitive impairments of the midbrain nigral dopaminergic neurons distinguish by this characteristic. Various pathogenic mechanisms and critical components have been reported, despite the fact that the origin is unknown, such as protein aggregation, iron buildup, mitochondrial dysfunction, neuroinflammation and oxidative stress. Anti-Parkinson drugs like dopamine (DA) agonists, levodopa, carbidopa, monoamine oxidase type B inhibitors and anticholinergics are used to replace DA in the current treatment model. Surgery is advised in cases where drug therapy is ineffective. Unfortunately, the current conventional treatments for PD have a number of harmful side effects and are expensive. As a result, new therapeutic strategies that control the mechanisms that contribute to neuronal death and dysfunction must be addressed. Natural resources have long been a useful source of possible treatments. PD can be treated with a variety of natural therapies made from medicinal herbs, fruits, and vegetables. In addition to their well-known anti-oxidative and anti-inflammatory capabilities, these natural products also play inhibitory roles in iron buildup, protein misfolding, the maintenance of proteasomal breakdown, mitochondrial homeostasis, and other neuroprotective processes. The goal of this research is to systematically characterize the currently available medications for Parkinson's and their therapeutic effects, which target diverse pathways. Overall, this analysis looks at the kinds of natural things that could be used in the future to treat PD in new ways or as supplements to existing treatments. We looked at the medicinal plants that can be used to treat PD. The use of natural remedies, especially those derived from plants, to treat PD has been on the rise. This article examines the fundamental characteristics of medicinal plants and the bioactive substances found in them that may be utilized to treat PD.

2.
Pharmacogenomics ; 23(3): 207-220, 2022 02.
Article in English | MEDLINE | ID: mdl-35042400

ABSTRACT

The aggregated risk of major adverse cardiovascular events (MACE) in acute coronary syndrome (ACS) patients inheriting CYP2C19 loss-of function (LoF) alleles who underwent percutaneous coronary intervention (PCI) and were treated with clopidogrel is controversial. In the current study, we searched the literature in different databases for eligible studies. The risk ratio (RR) was measured where p<0.05 was statistically significant. The ACS patients with either one or two CYP2C19 LoF alleles who underwent PCI, treated with clopidogrel were correlated with a significantly escalated risk of MACE compared with noncarriers (RR: 1.53, 95% CI: 1.39-1.69, p < 0.00001), driven by CV death (RR: 1.88, 95% CI: 1.18-3.01, p = 0.008), MI (RR: 1.67, 95% CI: 1.21-2.31, p = 0.002) and ST (RR: 1.90, 95% CI: 1.27-2.84, p = 0.002). Patients with two CYP2C19 LoF alleles were correlated with significantly greater risk of MACE compared with noncarriers (RR: 3.91, 95% CI: 2.78-5.50, p < 0.00001). Further analysis revealed that the risk of MACE was markedly significant in Asian patients (RR: 2.02, 95% CI: 1.67-2.44, p < 0.00001) and was comparatively low significance in western patients (RR: 1.35, 95% CI: 1.20-1.52, p < 0.00001). There was no significantly different bleeding events in patients with CYP2C19 LoF alleles compared with noncarriers (RR: 0.99, 95% CI: 0.85-1.15, p = 0.87). The ACS patients inheriting CYP2C19 LoF alleles, who underwent PCI and were treated with clopidogrel were correlated with significantly increased risk of MACE compared with noncarriers.


Subject(s)
Clopidogrel/adverse effects , Cytochrome P-450 CYP2C19/genetics , Loss of Function Mutation/genetics , Myocardial Infarction/etiology , Percutaneous Coronary Intervention/adverse effects , Platelet Aggregation Inhibitors/adverse effects , Acute Coronary Syndrome/surgery , Alleles , Clopidogrel/pharmacokinetics , Clopidogrel/therapeutic use , Humans , Myocardial Infarction/chemically induced , Myocardial Infarction/genetics , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/therapeutic use
3.
Heliyon ; 8(1): e08671, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35028456

ABSTRACT

The study was designed to evaluate the safety and efficacy of cilnidipine (CLN) and Mg-supplementation in fructose-induced diabetic rats. Diabetes was induced into male Wister rats by feeding fructose (10% solution) in drinking water for 8 weeks. Diabetic rats were subjected for the oral administration of CLN1 (1 mg/kg/day) and CLN10 (10 mg/kg/day), and/or methyl cellulose (0.5%) as vehicle for 28 days. After 14 days of CLN treatment, MgSO4 (1%) was added to CLN1 and CLN10 groups for another 14 days. Age-matched healthy rats were used as normal control. After 28 days body weights were measured and organ weight to body ratio was calculated. Serum samples were analysed for fasting blood sugar (FBS), glycosylated hemoglobin (HbA1c), uric acid, lipid profiles, tri-iodothyronine (T3) and thyroid stimulating hormone (TSH), serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT), creatine phosphokinase myocardial-band (CK-MB), creatinine, albumin, electrolytes. Oral glucose tolerance tests (OGTT), liver histopathology and in-vivo antioxidant activities were also performed. The survival rate in diabetic rats was 100% after the oral administration of CLN, Mg-supplement and/or vehicle. A significant reduction in FBS levels and improvement in OGTT were observed in CLN10, CLN1+Mg and CLN10 + Mg groups after 28 days. Further, the treatment ameliorated serum lipid profile, uric acid, and albumin levels. The groups CLN10 and CLN10 + Mg improved HbA1c, liver glycogen, creatinine, T3, TSH levels and electrolytes in diabetic rats. Moreover, liver from CLN10 and CLN10 + Mg groups showed preservation of cellular architecture as evidenced by attenuation of inflammatory markers SGPT, SGOT and CK-MB; and the levels of superoxide dismutase (SOD), catalase (CAT), glutathione, malondialdehyde (MDA), markers of oxidative stress were significantly improved. CLN exerted prominent effects in the amelioration of hyperglycemia, dyslipidemia and reduced hepatic inflammation; and Mg-supplementation might have some beneficial effects on diabetic complications and oxidative stress in fructose-induced diabetic rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...