Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 926: 172096, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38556009

ABSTRACT

The environmental risks of conventional waste disposal methods, along with the resource and energy value of waste, have formed the foundation for waste-to-energy (WtE) technology. WtE systems that work on recovering energy present a suitable solution to generate energy and sustainably manage waste. This type of waste management system in the Middle East and North Africa (MENA) region is still considered underutilized as WtE technology is rarely used due to a lack of experience in their specific local conditions, lack of qualified competencies, and the absence of an appropriate regulatory and legislative structure. This study reviews the existing WtE policies and regulations, and it investigates the potential of WtE techniques in the MENA region. Moreover, sustainability in water consumption is critical; therefore, various water-conservation techniques were reviewed and considered when selecting regulatory actions. The radiative sky cooling technique was recommended to reduce water consumption. Barriers to implementing WtE and solutions for developing countries were presented to enable proper WtE implementation.

2.
Nanotechnology ; 26(43): 434005, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26447742

ABSTRACT

We designed a nickel-assisted process to obtain graphene with sheet resistance as low as 80 Ω square(-1) from silicon carbide films on Si wafers with highly enhanced surface area. The silicon carbide film acts as both a template and source of graphitic carbon, while, simultaneously, the nickel induces porosity on the surface of the film by forming silicides during the annealing process which are subsequently removed. As stand-alone electrodes in supercapacitors, these transfer-free graphene-on-chip samples show a typical double-layer supercapacitive behaviour with gravimetric capacitance of up to 65 F g(-1). This work is the first attempt to produce graphene with high surface area from silicon carbide thin films for energy storage at the wafer-level and may open numerous opportunities for on-chip integrated energy storage applications.

3.
Beilstein J Nanotechnol ; 5: 2240-7, 2014.
Article in English | MEDLINE | ID: mdl-25551052

ABSTRACT

The characterization of Langmuir-Blodgett thin films of 10,12-pentacosadiynoic acid (PDA) and their use in metal-insulator-metal (MIM) devices were studied. The Langmuir monolayer behavior of the PDA film was studied at the air/water interface using surface tension-area isotherms of polymeric and monomeric PDA. Langmuir-Blodgett (LB, vertical deposition) and Langmuir-Schaefer (LS, horizontal deposition) techniques were used to deposit the PDA film on various substrates (glass, quartz, silicon, and nickel-coated film on glass). The electrochemical, electrical and optical properties of the LB and LS PDA films were studied using cyclic voltammetry, current-voltage characteristics (I-V), and UV-vis and FTIR spectroscopies. Atomic force microscopy measurements were performed in order to analyze the surface morphology and roughness of the films. A MIM tunnel diode was fabricated using a PDA monolayer assembly as the insulating barrier, which was sandwiched between two nickel layers. The precise control of the thickness of the insulating monolayers proved critical for electron tunneling to take place in the MIM structure. The current-voltage characteristics of the MIM diode revealed tunneling behavior in the fabricated Ni-PDA LB film-Ni structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...