Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neuromodulation ; 26(2): 320-332, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35219571

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) programming of multicontact DBS leads relies on a very time-consuming manual screening procedure, and strategies to speed up this process are needed. Beta activity in subthalamic nucleus (STN) local field potentials (LFP) has been suggested as a promising marker to index optimal stimulation contacts in patients with Parkinson disease. OBJECTIVE: In this study, we investigate the advantage of algorithmic selection and combination of multiple resting and movement state features from STN LFPs and imaging markers to predict three relevant clinical DBS parameters (clinical efficacy, therapeutic window, side-effect threshold). MATERIALS AND METHODS: STN LFPs were recorded at rest and during voluntary movements from multicontact DBS leads in 27 hemispheres. Resting- and movement-state features from multiple frequency bands (alpha, low beta, high beta, gamma, fast gamma, high frequency oscillations [HFO]) were used to predict the clinical outcome parameters. Subanalyses included an anatomical stimulation sweet spot as an additional feature. RESULTS: Both resting- and movement-state features contributed to the prediction, with resting (fast) gamma activity, resting/movement-modulated beta activity, and movement-modulated HFO being most predictive. With the proposed algorithm, the best stimulation contact for the three clinical outcome parameters can be identified with a probability of almost 90% after considering half of the DBS lead contacts, and it outperforms the use of beta activity as single marker. The combination of electrophysiological and imaging markers can further improve the prediction. CONCLUSION: LFP-guided DBS programming based on algorithmic selection and combination of multiple electrophysiological and imaging markers can be an efficient approach to improve the clinical routine and outcome of DBS patients.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Movement/physiology , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/physiology , Treatment Outcome , Biomarkers
2.
Brain ; 145(1): 237-250, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34264308

ABSTRACT

Exaggerated local field potential bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the subthalamic nucleus local field potential in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. Local field potentials were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the subthalamic nucleus. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. Local field potentials were analysed using hidden Markov modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional local field potential states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all local field potential states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the subthalamic nucleus local field potential have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how local field potential feedback can be made more informative in closed-loop deep brain stimulation systems.


Subject(s)
Deep Brain Stimulation , Motor Disorders , Parkinson Disease , Subthalamic Nucleus , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Parkinson Disease/complications , Parkinson Disease/drug therapy , Subthalamic Nucleus/physiology
3.
J Neurosci ; 41(40): 8390-8402, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34413208

ABSTRACT

The pedunculopontine nucleus (PPN) is a reticular collection of neurons at the junction of the midbrain and pons, playing an important role in modulating posture and locomotion. Deep brain stimulation of the PPN has been proposed as an emerging treatment for patients with Parkinson's disease (PD) or multiple system atrophy (MSA) who have gait-related atypical parkinsonian syndromes. In this study, we investigated PPN activities during gait to better understand its functional role in locomotion. Specifically, we investigated whether PPN activity is rhythmically modulated by gait cycles during locomotion. PPN local field potential (LFP) activities were recorded from PD or MSA patients with gait difficulties during stepping in place or free walking. Simultaneous measurements from force plates or accelerometers were used to determine the phase within each gait cycle at each time point. Our results showed that activities in the alpha and beta frequency bands in the PPN LFPs were rhythmically modulated by the gait phase within gait cycles, with a higher modulation index when the stepping rhythm was more regular. Meanwhile, the PPN-cortical coherence was most prominent in the alpha band. Both gait phase-related modulation in the alpha/beta power and the PPN-cortical coherence in the alpha frequency band were spatially specific to the PPN and did not extend to surrounding regions. These results suggest that alternating PPN modulation may support gait control. Whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control remains to be tested.SIGNIFICANCE STATEMENT The therapeutic efficacy of pedunculopontine nucleus (PPN) deep brain stimulation (DBS) and the extent to which it can improve quality of life are still inconclusive. Understanding how PPN activity is modulated by stepping or walking may offer insight into how to improve the efficacy of PPN DBS in ameliorating gait difficulties. Our study shows that PPN alpha and beta activity was modulated by the gait phase, and that this was most pronounced when the stepping rhythm was regular. It remains to be tested whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control.


Subject(s)
Alpha Rhythm/physiology , Beta Rhythm/physiology , Deep Brain Stimulation/methods , Gait/physiology , Pedunculopontine Tegmental Nucleus/physiology , Aged , Electroencephalography/methods , Female , Humans , Male , Middle Aged , Multiple System Atrophy/physiopathology , Multiple System Atrophy/therapy , Parkinson Disease/physiopathology , Parkinson Disease/therapy
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3602-3605, 2020 07.
Article in English | MEDLINE | ID: mdl-33018782

ABSTRACT

High frequency Deep Brain Stimulation (DBS) targeting the motor thalamus is an effective therapy for essential tremor (ET). However, since tremor mainly affects periods of voluntary movements and sustained postures in ET, conventional continuous stimulation may deliver unnecessary current to the brain. Here we tried to decode movement states based on local field potentials (LFPs) recorded from motor thalamus and zona incerta in real-time to trigger the switching on and off of DBS in three patients with ET. Patient-specific models were first identified using thalamic LFPs recorded while the patient performed movements that tended to trigger tremor in everyday life. During the real-time test, LFPs were continuously recorded to decode movements and tremor, and the detection triggered stimulation. Results show that voluntary movements can be detected with a mean sensitivity ranging from 76.8% to 88.6% and a false positive rate ranging from 16.0% to 23.1% Postural tremor was detected with similar accuracy. The closed-loop DBS triggered by tremor detection suppressed intention tremor by 90.5% with a false positive rate of 20.3%.Clinical Relevance- This is the first study on closed-loop DBS triggered by real-time movement and tremor decoding based solely on thalamic LFPs. The results suggest that responsive DBS based on movement and tremor detection can be achieved without any requirement for external sensors or additional electrocorticography strips.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Essential Tremor/therapy , Humans , Movement , Thalamus , Tremor/diagnosis
5.
Brain ; 143(2): 582-596, 2020 02 01.
Article in English | MEDLINE | ID: mdl-32040563

ABSTRACT

Whilst exaggerated bursts of beta frequency band oscillatory synchronization in the subthalamic nucleus have been associated with motor impairment in Parkinson's disease, a plausible mechanism linking the two phenomena has been lacking. Here we test the hypothesis that increased synchronization denoted by beta bursting might compromise information coding capacity in basal ganglia networks. To this end we recorded local field potential activity in the subthalamic nucleus of 18 patients with Parkinson's disease as they executed cued upper and lower limb movements. We used the accuracy of local field potential-based classification of the limb to be moved on each trial as an index of the information held by the system with respect to intended action. Machine learning using the naïve Bayes conditional probability model was used for classification. Local field potential dynamics allowed accurate prediction of intended movements well ahead of their execution, with an area under the receiver operator characteristic curve of 0.80 ± 0.04 before imperative cues when the demanded action was known ahead of time. The presence of bursts of local field potential activity in the alpha, and even more so, in the beta frequency band significantly compromised the prediction of the limb to be moved. We conclude that low frequency bursts, particularly those in the beta band, restrict the capacity of the basal ganglia system to encode physiologically relevant information about intended actions. The current findings are also important as they suggest that local subthalamic activity may potentially be decoded to enable effector selection, in addition to force control in restorative brain-machine interface applications.


Subject(s)
Extremities/physiopathology , Movement/physiology , Parkinson Disease/therapy , Subthalamic Nucleus/physiopathology , Action Potentials/physiology , Basal Ganglia/physiopathology , Beta Rhythm/physiology , Deep Brain Stimulation/methods , Female , Humans , Male , Motor Cortex/physiopathology , Subthalamic Nucleus/physiology
6.
Clin Neurophysiol ; 130(5): 727-738, 2019 05.
Article in English | MEDLINE | ID: mdl-30903826

ABSTRACT

OBJECTIVE: Functional processes in the brain are segregated in both the spatial and spectral domain. Motivated by findings reported at the cortical level in healthy participants we test the hypothesis in the basal ganglia of Parkinson's disease patients that lower frequency beta band activity relates to motor circuits associated with the upper limb and higher beta frequencies with lower limb movements. METHODS: We recorded local field potentials (LFPs) from the subthalamic nucleus using segmented "directional" DBS leads, during which patients performed repetitive upper and lower limb movements. Movement-related spectral changes in the beta and gamma frequency-ranges and their spatial distributions were compared between limbs. RESULTS: We found that the beta desynchronization during leg movements is characterised by a strikingly greater involvement of higher beta frequencies (24-31 Hz), regardless of whether this was contralateral or ipsilateral to the limb moved. The spatial distribution of limb-specific movement-related changes was evident at higher gamma frequencies. CONCLUSION: Limb processing in the basal ganglia is differentially organised in the spectral and spatial domain and can be captured by directional DBS leads. SIGNIFICANCE: These findings may help to refine the use of the subthalamic LFPs as a control signal for adaptive DBS and neuroprosthetic devices.


Subject(s)
Action Potentials/physiology , Lower Extremity/physiopathology , Movement/physiology , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Upper Extremity/physiopathology , Adult , Aged , Basal Ganglia/physiopathology , Deep Brain Stimulation , Female , Humans , Male , Middle Aged , Motor Cortex/physiopathology
7.
J Electr Bioimpedance ; 9(1): 3-9, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33584914

ABSTRACT

Gold electrodes are often not suitable for dopamine measurements as dopamine creates a non-conducting polymer layer on the surface of the electrodes, which leads to increased amount of electrode passivity with the gradual increase in voltammograms measurement. This work presents the impedance spectroscopy and cyclic-voltammetry comparative study for dopamine detection with two modifications for the surface of Au electrodes; cysteamine and mercaptopropionic acid for thermally bonded and ultrasonically welded microfluidic chips, respectively. The effects of optimized tubing selection, bonding techniques, and cleaning methods of the devices with KOH solution played crucial role for improvements in dopamine detection, which are observed in the results. Furthermore, comparison for the modification with unmodified chips, and finding the unknown concentration of dopamine solution using flow injection techniques, is also illustrated.

8.
J Electr Bioimpedance ; 9(1): 10-16, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33584915

ABSTRACT

Although liquid-liquid extraction methods are currently being applied in many areas such as analytical chemistry, biochemical engineering, biochemistry, and biological applications, accessibility and usability of microfluidics in practical daily life fields are still bounded. Suspended microfluidic devices have the potential to lessen the obstacles, but the absence of robust design rules have hampered their usage. The primary objective of this work is to design and fabricate a microfluidic device to quantitatively monitor the drug uptake of cancer cells. Liquid-liquid extraction is used to quantify the drug uptake. In this research work, designs and simulations of two different microfluidic devices for carrying out multiplex solution experiments are proposed to test their efficiency. These simplified miniaturized chips would serve as suspended microfluidic metabolites extraction platform as it allows extracting the metabolites produced from the cancer cells as a result of applying a specific drug type for a certain period of time. These devices would be fabricated by making polydimethylsiloxane (PDMS) molds from the negative master mold using soft lithography. Furthermore, it can leverage to provide versatile functionalities like high throughput screening, cancer cell invasions, protein purification, and small molecules extractions. As per previous studies, PDMS has been depicting better stability with various solvents and has proved to be a reliable and cost effective material to be used for fabrication, though the sensitivity of the chip would be analyzed by cross contamination and of solvents within the channels of device.

9.
J Electr Bioimpedance ; 9(1): 83, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33591293

ABSTRACT

[This retracts the article DOI: 10.2478/joeb-2018-0002.].

10.
Genes (Basel) ; 8(11)2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29149087

ABSTRACT

Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential for using it in many other applications in genome analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...