Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Orthod ; 39(4): 419-425, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28339591

ABSTRACT

BACKGROUND/OBJECTIVE: The aim of this study was to evaluate force levels exerted by levelling arch wires with labial and lingual conventional and self-ligating brackets. MATERIALS/METHODS: The tested orthodontic brackets were of the 0.022-in slot size for labial and 0.018-in for lingual brackets and were as follows: 1. Labial brackets: (i) conventional bracket (GAC-Twin, Dentsply), (ii) passive self-ligating (SL) brackets (Damon-Q®, ORMCO; Ortho classic H4™, Orthoclassic; FLI®SL, Rocky Mountain Orthodontics) and (iii) active SL brackets (GAC In-Ovation®C, DENTSPLY and SPEED™, Strite). 2. Lingual brackets: (i) conventional brackets (Incognito, 3M and Joy™, Adenta); (ii) passive SL bracket (GAC In-Ovation®LM™, Dentsply and (iii) active SL bracket (Evolution SLT, Adenta). Thermalloy-NiTi 0.013-in and 0.014-in arch wires (Rocky Mountain Orthodontics) were used with all brackets. The simulated malocclusion represented a maxillary central incisor displaced 2 mm gingivally (x-axis) and 2 mm labially (z-axis). RESULTS: Lingual bracket systems showed higher force levels (2.4 ± 0.2 to 3.8 ± 0.2 N) compared to labial bracket systems (from 1.1 ± 0.1 to 2.2 ± 0.4 N). However, the differences between SL and conventional bracket systems were minor and not consistent (labial brackets: 1.2 ± 0.1 N for the GAC Twin and 1.1 ± 0.1 to 1.6 ± 0.1 N for the SL brackets with 0.013-in thermalloy; lingual brackets: 2.5 ± 0.2 to 3.5 ± 0.1 N for the conventional and 2.7 ± 0.3 to 3.4 ± 0.1 N for the SL brackets with 0.013-in Thermalloy). LIMITATIONS: This is an in vitro study with different slot sizes in the labial and lingual bracket systems, results should be interpreted with caution. CONCLUSIONS/IMPLICATIONS: Lingual bracket systems showed higher forces compared to labial bracket systems that might be of clinical concern. We recommend highly flexible nickel titanium arch wires lower than 0.013-in for the initial levelling and alignment especially with lingual appliances.


Subject(s)
Malocclusion/therapy , Orthodontic Brackets , Tooth Movement Techniques/instrumentation , Dental Alloys , Humans , Incisor/pathology , Malocclusion/pathology , Nickel , Orthodontic Appliance Design , Orthodontic Wires , Stress, Mechanical , Titanium
2.
J Orofac Orthop ; 77(5): 334-40, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27384715

ABSTRACT

OBJECTIVE: To compare the percentage of force loss generated during canine sliding movements in newly introduced ceramic brackets with metal brackets. MATERIALS AND METHODS: Two types of ceramic brackets, namely polycrystalline alumina (PCA) ceramic brackets (Clarity Advanced) and monocrystalline alumina (MCA) ceramic brackets (Inspire Ice) were compared with stainless steel (SS) brackets (Victory Series). All bracket groups (n = 5 each) were for the maxillary canines and had a 0.018-inch slot size. The brackets were mounted on an Orthodontic Measurement and Simulation System (OMSS) to simulate the canine retraction movement into the first premolar extraction space. Using elastic ligatures, 0.016 × 0.022″ (0.40 × 0.56 mm) stainless steel archwires were ligated onto the brackets. Retraction force was applied via a nickel-titanium coil spring with a nearly constant force of approximately 1 N. The OMSS measured the percentage of force loss over the retraction path by referring to the difference between the applied retraction force and actual force acting on each bracket. Between group comparisons were done with one-way analysis of variance. RESULTS: The metal brackets revealed the lowest percentage of force loss due to friction, followed by the PCA and MCA ceramic bracket groups (67 ± 4, 68 ± 7, and 76 ± 3 %, respectively). There was no significant difference between SS and PCA brackets (p = 0.97), but we did observe significant differences between metal and MCA brackets (p = 0.03) and between PCA and MCA ceramic brackets (p = 0.04). CONCLUSION: PCA ceramic brackets, whose slot surface is covered with an yttria-stabilized zirconia-based coating exhibited frictional properties similar to those of metal brackets. Frictional resistance resulted in an over 60 % loss of the applied force due to the use of elastic ligatures.


Subject(s)
Ceramics/chemistry , Cuspid/physiology , Dental Stress Analysis/methods , Orthodontic Brackets , Tooth Mobility/physiopathology , Tooth Movement Techniques/methods , Dental Materials/chemistry , Dental Prosthesis Design , Equipment Failure Analysis , Friction , Humans , In Vitro Techniques , Motion , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...