Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38850559

ABSTRACT

This study explores the adhesive properties of copolymers comprising glycidyl methacrylate (GMA) and 3-(trimethoxysilyl)propyl methacrylate (MPTMS), focusing on their suitability for adhesive applications. Peel resistance measurements revealed a substantial impact of the GMA/MPTMS ratio on adhesion capabilities, identifying an optimal ratio of 30/70 for copolymerization with tert-butyl acrylate (tBA) to improve foaming performance. tBA, a foaming monomer activated by a photoacid generator and heat, enhances the copolymerized adhesive's adhesion strength and foamability for postuse delamination. Chemical structure analysis through Nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) confirmed successful polymerization, while rheological properties indicated decreased complex viscosity and adhesive strength with an increasing tBA content. The deprotection of the t-butyl group facilitated foam formation, supported by morphology analysis. These findings provide insights into foamable adhesive development with potential applications in delamination processes and implications for further exploration in polymer adhesion.

2.
J Biosci Bioeng ; 128(5): 593-598, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31147220

ABSTRACT

The strain of Cellulomonas fimi NBRC 15513 can generate electricity with cellulose as fuel without mediator using a single chamber type microbial fuel cell (MFC) which had 100 mL of chamber and 50 cm2 of the air cathode. The MFCs were operated over five days and showed the maximum current density of 10.0 ± 1.8 mA/m2, the maximum power density of 0.74 ± 0.07 mW/m2 and the ohmic resistance of 6.9 kΩ. According to the results of cyclic voltammetry, the appearance of the oxidation or reduction peak was not observed from the cell removed solution. The fact is that C. fimi does not secrete mediator-like compounds, while the oxidation peak was observed at +0.68 V from the phosphate buffer containing the washed cell. The peak appearance was caused by the electron transfer activity of which corresponds to cytochrome c, and disappeared after adding antimycin A which inhibits the electron transfer activity. The cell was alive throughout the experiment as the result of a colony forming unit on Luria-Bertani agar plates. This was thought that cytochrome c was on the membrane surface of the living cell and played a role in the direct electron transfer between the cells and anode.


Subject(s)
Cellulomonas/metabolism , Bioelectric Energy Sources , Cellulose/metabolism , Electrodes , Electron Transport , Oxidation-Reduction
3.
J Biosci Bioeng ; 126(4): 514-521, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29764764

ABSTRACT

A single chamber type microbial fuel cell (MFC) with 100 mL of chamber volume and 50 cm2 of air-cathode was developed in this study wherein a developed iron-plated carbon-felt anode and Shewanella oneidensis MR-1 were used. The performance of the iron-plated carbon-felt anode and the possibility of corn steep liquor (CSL) as a fuel, which was the byproduct of corn wet milling and contained lactic acid, was investigated here. MFCs equipped with iron-plated or non-plated carbon-felt anodes exhibited maximum current densities of 443 or 302 mA/m2 using 10 g/L of reagent-grade lactic acid, respectively. In addition, using centrifuged CSL without insoluble ingredients or non-centrifuged CSL as a fuel, the maximum current densities of the MFCs with iron-plated carbon-felt anode were 321 or 158 mA/m2, respectively. This report demonstrated the effect of iron-plated carbon-felt anode for electricity generation of MFC using S. oneidensis MR-1 and the performance of CSL as a fuel.


Subject(s)
Biofuels/analysis , Shewanella/chemistry , Shewanella/metabolism , Zea mays/microbiology , Bioelectric Energy Sources/microbiology , Carbon/metabolism , Electricity , Electrodes , Iron/metabolism , Lactic Acid/metabolism , Zea mays/chemistry , Zea mays/metabolism
4.
J Biosci Bioeng ; 123(3): 358-363, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27818074

ABSTRACT

Cellulomonas fimi, Cellulomonas biazotea, and Cellulomonas flavigena are cellulose-degrading microorganisms chosen to compare the degradation of cellulose. C. fimi degraded 2.5 g/L of cellulose within 4 days, which was the highest quantity among the three microorganisms. The electric current generation by the microbial fuel cell (MFC) using the cellulose-containing medium with C. fimi was measured over 7 days. The medium in the MFC was sampled every 24 h to quantify the degradation of cellulose, and the results showed that the electric current increased with the degradation of cellulose. The maximum electric power generated by the MFC was 38.7 mW/m2, and this numeric value was 63% of the electric power generated by an MFC with Shewanella oneidensis MR-1, a well-known current-generating microorganism. Our results showed that C. fimi was an excellent candidate to produce the electric current from cellulose via MFCs.


Subject(s)
Bioelectric Energy Sources , Cellulomonas/metabolism , Cellulose/metabolism , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...