Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Biophys J ; 106(8): 1671-80, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24739166

ABSTRACT

To understand how mutations in thick filament proteins such as cardiac myosin binding protein-C or titin, cause familial hypertrophic cardiomyopathies, it is important to determine the structure of the cardiac thick filament. Techniques for the genetic manipulation of the zebrafish are well established and it has become a major model for the study of the cardiovascular system. Our goal is to develop zebrafish as an alternative system to the mammalian heart model for the study of the structure of the cardiac thick filaments and the proteins that form it. We have successfully isolated thick filaments from zebrafish cardiac muscle, using a procedure similar to those for mammalian heart, and analyzed their structure by negative-staining and electron microscopy. The isolated filaments appear well ordered with the characteristic 42.9 nm quasi-helical repeat of the myosin heads expected from x-ray diffraction. We have performed single particle image analysis on the collected electron microscopy images for the C-zone region of these filaments and obtained a three-dimensional reconstruction at 3.5 nm resolution. This reconstruction reveals structure similar to the mammalian thick filament, and demonstrates that zebrafish may provide a useful model for the study of the changes in the cardiac thick filament associated with disease processes.


Subject(s)
Myocardium/ultrastructure , Myosins/isolation & purification , Myosins/ultrastructure , Zebrafish/metabolism , Animals , Carrier Proteins/ultrastructure , Connectin/ultrastructure , Fourier Analysis , Imaging, Three-Dimensional , Models, Molecular
3.
Proc Natl Acad Sci U S A ; 110(1): 318-23, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23251030

ABSTRACT

Of all the myosin filaments in muscle, the most important in terms of human health, and so far the least studied, are those in the human heart. Here we report a 3D single-particle analysis of electron micrograph images of negatively stained myosin filaments isolated from human cardiac muscle in the normal (undiseased) relaxed state. The resulting 28-Å resolution 3D reconstruction shows axial and azimuthal (no radial) myosin head perturbations within the 429-Å axial repeat, with rotations between successive 132 Å-, 148 Å-, and 149 Å-spaced crowns of heads close to 60°, 35°, and 25° (all would be 40° in an unperturbed three-stranded helix). We have defined the myosin head atomic arrangements within the three crown levels and have modeled the organization of myosin subfragment 2 and the possible locations of the 39 Å-spaced domains of titin and the cardiac isoform of myosin-binding protein-C on the surface of the myosin filament backbone. Best fits were obtained with head conformations on all crowns close to the structure of the two-headed myosin molecule of vertebrate chicken smooth muscle in the dephosphorylated relaxed state. Individual crowns show differences in head-pair tilts and subfragment 2 orientations, which, together with the observed perturbations, result in different intercrown head interactions, including one not reported before. Analysis of the interactions between the myosin heads, the cardiac isoform of myosin-binding protein-C, and titin will aid in understanding of the structural effects of mutations in these proteins known to be associated with human cardiomyopathies.


Subject(s)
Models, Molecular , Myocardium/chemistry , Myofibrils/chemistry , Myosins/chemistry , Myosins/ultrastructure , Carrier Proteins/metabolism , Connectin , Crystallography, X-Ray , Humans , Imaging, Three-Dimensional , Microscopy, Electron , Muscle Proteins/metabolism , Myocardium/ultrastructure , Myofibrils/ultrastructure , Protein Kinases/metabolism
4.
Glob Cardiol Sci Pract ; 2013(3): 280-302, 2013.
Article in English | MEDLINE | ID: mdl-24689030

ABSTRACT

High resolution information about the three-dimensional (3D) structure of myosin filaments has always been hard to obtain. Solving the 3D structure of myosin filaments is very important because mutations in human cardiac muscle myosin and its associated proteins (e.g. titin and myosin binding protein C) are known to be associated with a number of familial human cardiomyopathies (e.g. hypertrophic cardiomyopathy and dilated cardiomyopathy). In order to understand how normal heart muscle works and how it fails, as well as the effects of the known mutations on muscle contractility, it is essential to properly understand myosin filament 3D structure and properties in both healthy and diseased hearts. The aim of this review is firstly to provide a general overview of the 3D structure of myosin thick filaments, as studied so far in both vertebrates and invertebrate striated muscles. Knowledge of this 3D structure is the starting point from which myosin filaments isolated from human cardiomyopathic samples, with known mutations in either myosin or its associated proteins (titin or C-protein), can be studied in detail. This should, in turn, enable us to relate the structure of myosin thick filament to its function and to understanding the disease process. A long term objective of this research would be to assist the design of possible therapeutic solutions to genetic myosin-related human cardiomyopathies.

5.
J Mol Biol ; 403(5): 763-76, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-20851129

ABSTRACT

The rods of anti-parallel myosin molecules overlap at the centre of bipolar myosin filaments to produce an M-region (bare zone) that is free of myosin heads. Beyond the M-region edges, myosin molecules aggregate in a parallel fashion to yield the bridge regions of the myosin filaments. Adjacent myosin filaments in striated muscle A-bands are cross-linked by the M-band. Vertebrate striated muscle myosin filaments have a 3-fold rotational symmetry around their long axes. In addition, at the centre of the M-region, there are three 2-fold axes perpendicular to the filament long axis, giving the whole filament dihedral 32-point group symmetry. Here we describe the three-dimensional structure obtained by a single-particle analysis of the M-region of myosin filaments from goldfish skeletal muscle under relaxing conditions and as viewed in negative stain. This is the first single-particle reconstruction of isolated M-regions. The resulting three-dimensional reconstruction reveals details to about 55 Å resolution of the density distribution in the five main nonmyosin densities in the M-band (M6', M4', M1, M4 and M6) and in the myosin head crowns (P1, P2 and P3) at the M-region edges. The outermost crowns in the reconstruction were identified specifically by their close similarity to the corresponding crown levels in our previously published bridge region reconstructions. The packing of myosin molecules into the M-region structure is discussed, and some unidentified densities are highlighted.


Subject(s)
Fish Proteins/chemistry , Fish Proteins/ultrastructure , Myosins/chemistry , Myosins/ultrastructure , Animals , Goldfish , Image Processing, Computer-Assisted , Microscopy, Electron, Transmission , Models, Molecular , Muscle, Skeletal/chemistry , Muscle, Skeletal/ultrastructure , Protein Conformation , Protein Multimerization
6.
J Struct Biol ; 166(2): 183-94, 2009 May.
Article in English | MEDLINE | ID: mdl-19248832

ABSTRACT

Isolated relaxed myosin filaments from the myosin-regulated scallop striated adductor muscle have been reconstructed using electron microscopy and single particle analysis of negatively stained filaments. Three-dimensional reconstruction using 7-fold rotational symmetry but without imposed helical symmetry confirmed that the myosin head array is a 7-stranded, right-handed long-pitch 24/1 helix (or left-handed short-pitch 10/1 helix) with the whole structure having an axial repeat of 1440A. Reconstruction using the full helical symmetry revealed details of the myosin head density distribution within the head crowns in the relaxed scallop myosin filament. The resulting density distribution can best be explained by an arrangement in which the two heads from the same myosin molecule interact together within each crown in a compact parallel fashion along the filament axis. The configuration is consistent with the published configuration of the two heads within vertebrate smooth muscle myosin molecules observed in two-dimensional crystals of smooth muscle myosin and in the structure of tarantula myosin filaments. All these three muscle types are myosin-regulated, providing further support for a general motif of intramolecular interacting-heads structure in the relaxed state of myosin-regulated muscles as was proposed earlier by Woodhead et al. [Woodhead, J.L., Zhao, F.-Q., Craig, R., Egelman, E.H., Alamo, L., Padron, R.. 2005. Atomic model of a myosin filament in the relaxed state. Nature 436, 1195-1199]. However, the orientation of the Wendt structure is different from that found by Woodhead in that the outer head projects outwards and the inner head lies closer to the filament backbone, as in earlier work done on the insect flight muscle myosin filaments [AL-Khayat, H.A., Hudson, L., Reedy, M.K., Irving, T.C., Squire, J.M., 2003. Myosin head configuration in relaxed insect flight muscle: X-ray modelled resting crossbridges in a pre-powerstroke state are poised for actin binding. Biophys. J. 85, 1063-1079]. Possible species specific details that may differ between the scallop and the tarantula myosin filaments are also discussed.


Subject(s)
Muscles/metabolism , Myosins/chemistry , Pectinidae/metabolism , Animals , Cryoelectron Microscopy , Image Processing, Computer-Assisted , Muscle Relaxation/physiology , Muscles/ultrastructure , Myosins/ultrastructure , Pectinidae/ultrastructure
7.
J Struct Biol ; 163(2): 117-26, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18472277

ABSTRACT

A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2x430A long, each of which was treated as an independent 'particle'. The resulting 40A resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430A repeat, with successive crown rotations of approximately 60 degrees , 60 degrees and 0 degrees , rather than the regular 40 degrees for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac).


Subject(s)
Cardiac Myosins/ultrastructure , Myocardium/chemistry , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Animals , Cardiac Myosins/chemistry , Imaging, Three-Dimensional , Microscopy, Electron , Protein Conformation , Rabbits
8.
World J Surg ; 31(8): 1677-81, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17541683

ABSTRACT

INTRODUCTION: Idiopathic granulomatous mastitis (IGM) is a rare benign inflammatory breast disease that presents with variable local manifestations. We describe here the different management protocols based on the clinical presentation of these patients. METHODS: A retrospective review of 20 histopathologic confirmed cases of IGM seen over a period of 10 years was performed. RESULTS: The median age was 34 years (age range: 21-45 years). All were married, parous with history of breast feeding. Ill-defined mass mimicking carcinoma was the commonest presentation (70%); however, with the presence of signs of inflammation like pain (55%), redness (40%), and peau d'orange (40%), an inflammatory process appeared more likely. Axillary lymph node enlargement was infrequently seen (40%). Radiologic findings (mammography and ultrasound) were nonspecific. Histopathology showed the characteristic lobular distribution of granulomatous inflammation in all cases. Surgically, 7 patients had abscess drainage with open biopsy, and 7 patients had lumpectomy. Six patients with diffuse breast involvement were diagnosed by core needle biopsy only. Microbial cultures showed no growth. Antibiotics were given empirically when signs of inflammation where present. Two patients needed further abscess drainage followed by persistent sinus excision 3-6 weeks later. The median follow-up was 24 months (range: 15-42 months). Seventeen patients (85%) were recurrence-free, and 3 patients (15%) were lost to follow-up. CONCLUSIONS: Management of IGM cases needs to be tailored according to the clinical presentation. Precise radiologic and pathologic data interpretation by a multidisciplinary breast team will facilitate diagnosis and minimize unnecessary intervention.


Subject(s)
Granuloma/diagnosis , Mastitis/diagnosis , Adult , Biopsy , Female , Granuloma/pathology , Granuloma/therapy , Humans , Longitudinal Studies , Mammography , Mastitis/pathology , Mastitis/therapy , Middle Aged , Recurrence , Retrospective Studies
9.
J Appl Crystallogr ; 40(Pt 1): 178-184, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-19461842

ABSTRACT

The extraction of useful information from recorded diffraction patterns from non-crystalline materials is non-trivial and is not a well defined operation. Unlike protein crystallography where one expects to see well behaved diffraction spots in predictable positions defined by standard space groups, the diffraction patterns from non-crystalline materials are very diverse. They can range from uniaxially oriented fibre patterns which are completely sampled as Bragg peaks, but rotationally averaged around the fibre axis, to fibre patterns that are completely unsampled, to either kind of pattern with considerable axial misalignment (disorientation), to liquid-like order and even to mixtures of these various structure types. In the case of protein crystallography, the specimen is generated artificially and only used if the degree of order is sufficient to yield a three-dimensional density map of high enough resolution to be interpreted sensibly. However, with non-crystalline diffraction, many of the specimens of interest are naturally occurring (e.g. cellulose, rubber, collagen, muscle, hair, silk) and to elucidate their structure it is necessary to extract structural information from the materials as they actually are and to whatever resolution is available. Even when synthetic fibres are generated from purified components (e.g. nylon, polyethylene, DNA, polysaccharides, amyloids etc.) and diffraction occurs to high resolution, it is rarely possible to obtain perfect uniaxial alignment. The CCP13 project was established in the 1990s to generate software which will be generally useful for analysis of non-crystalline diffraction patterns. Various individual programs were written which allowed separate steps in the analysis procedure to be carried out. Many of these programs have now been integrated into a single user-friendly package known as FibreFix, which is freely downloadable from http://www.ccp13.ac.uk. Here the main features of FibreFix are outlined and some of its applications are illustrated.

10.
J Struct Biol ; 155(2): 218-29, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16884926

ABSTRACT

Application of X-ray diffraction methods to the elucidation of the arrangement of the myosin heads on myosin filaments in resting muscles is made simpler when the muscles themselves are well ordered in 3D. Bony fish muscle for the vertebrates and insect flight muscle for the invertebrates are the muscles of choice for this analysis. The rich, well-sampled, low-angle X-ray diffraction pattern from bony fish muscle has previously been modelled with an R-factor of 3.4% between observed and calculated transforms on the assumption that the two heads in one myosin molecule have the same shape. However, recent evidence from other kinds of analysis of other muscles has shown that this assumption may not be valid. There is evidence that the motor domain of one head in each pair may interact with the neck region of the second head. This possibility has been tested directly in the present analysis which extends the X-ray modelling of fish muscle myosin filaments by permitting independent shape changes of the two heads in one molecule. The new model, with a computed R-factor of 1.19% against 56 independent reflections, shows that in fish muscle also there is a marked asymmetry in the organisation of each head pair.


Subject(s)
Fishes/metabolism , Myosins/chemistry , X-Ray Diffraction/methods , Animals , Imaging, Three-Dimensional/methods , Insecta/metabolism
11.
J Struct Biol ; 155(2): 202-17, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16731006

ABSTRACT

To understand the structural changes involved in the force-producing myosin cross-bridge cycle in vertebrate muscle it is necessary to know the arrangement and conformation of the myosin heads at the start of the cycle (i.e. the relaxed state). Myosin filaments isolated from goldfish muscle under relaxing conditions and viewed in negative stain by electron microscopy (EM) were divided into segments and subjected to three-dimensional (3D) single particle analysis without imposing helical symmetry. This allowed the known systematic departure from helicity characteristic of vertebrate striated muscle myosin filaments to be preserved and visualised. The resulting 3D reconstruction reveals details to about 55 A resolution of the myosin head density distribution in the three non-equivalent head 'crowns' in the 429 A myosin filament repeat. The analysis maintained the well-documented axial perturbations of the myosin head crowns and revealed substantial azimuthal perturbations between crowns with relatively little radial perturbation. Azimuthal rotations between crowns were approximately 60 degrees , 60 degrees and 0 degrees , rather than the regular 40 degrees characteristic of an unperturbed helix. The new density map correlates quite well with the head conformations analysed in other EM studies and in the relaxed fish muscle myosin filament structure modelled from X-ray fibre diffraction data. The reconstruction provides information on the polarity of the myosin head array in the A-band, important in understanding the geometry of the myosin head interaction with actin during the cross-bridge cycle, and supports a number of conclusions previously inferred by other methods. The observed azimuthal head perturbations are consistent with the X-ray modelling results from intact muscle, indicating that the observed perturbations are an intrinsic property of the myosin filaments and are not induced by the proximity of actin filaments in the muscle A-band lattice. Comparison of the axial density profile derived in this study with the axial density profile of the X-ray model of the fish myosin filaments which was restricted to contributions from the myosin heads allows the identification of a non-myosin density peak associated with the azimuthally perturbed head crown which can be interpreted as a possible location for C-protein or X-protein (MyBP-C or -X). This position for C-protein is also consistent with the C-zone interference function deduced from previous analysis of the meridional X-ray pattern from frog muscle. It appears that, along with other functions, C-(X-) protein may have the role of slewing the heads of one crown so that they do not clash with the neighbouring actin filaments, but are readily available to interact with actin when the muscle is activated.


Subject(s)
Fishes/metabolism , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Myosins/chemistry , Animals , Microscopy, Electron/methods , Myosins/ultrastructure , Protein Structure, Secondary , X-Ray Diffraction
14.
J Mol Biol ; 344(3): 707-24, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15533440

ABSTRACT

A pre-condition for the ab initio assignment of Euler angles to a set of projections from an asymmetric object is that at least three of the available projections correspond to rotations about different axes. For symmetric objects this condition may be relaxed. There are some applications of single-particle electron microscopy, such as the reconstruction of filamentous macromolecular assemblies, where all available projections more-or-less correspond to rotations about a common rotation axis making it difficult to satisfy this condition. Here, a method has been developed to overcome this problem, based on the fact that the correlation between two central sections of the Fourier transform of a compact object will not be limited to an infinitesimal central line but will have a finite extent, which is related to the angle between the corresponding projections. Projections from model filaments, with different degrees of rotational symmetry about the long axis, have been used to test the methodology. The results show that angle determination is robust down to signal-to-noise ratios as low as 2 and that, in general, the error decreases as the degree of symmetry increases. The method has been used to assign angles to a set of negatively stained muscle thick filament projections to obtain an initial 3D reconstruction. The main features of the projections are seen to be faithfully reproduced in the reprojections from the reconstruction. A real-space adaptation of this method is also discussed.


Subject(s)
Myosins/chemistry , Fourier Analysis , Protein Conformation
15.
J Muscle Res Cell Motil ; 25(8): 635-44, 2004.
Article in English | MEDLINE | ID: mdl-15750848

ABSTRACT

Knowledge of the structure of muscle myosin filaments is essential for a proper understanding of sarcomere structure and how myosin heads interact with the actin filaments to produce force and movement. Two principal methods have been used to define the myosin head arrays in filaments in the relaxed state, namely modelling from low-angle X-ray diffraction data and image processing of electron micrographs of isolated filaments. Analysis of filament images by 3D helical reconstruction, which imposes total helical symmetry on the structure, is very effective in some cases, but it relies on the existence of very highly ordered preparations of straight filaments. Resolutions achieved to date are about 70 angstroms. Modelling of X-ray diffraction data recorded from whole relaxed fish or insect muscles has also been used as an independent method. Although the resolution of the diffraction data is often also about 70 angstroms, the effective resolution of the modelling is very much higher than this because additional very high resolution data (e.g. from protein crystallography) is included in the analysis. However, the X-ray diffraction method has to date provided only limited data on non-myosin thick filament proteins such as C-protein and titin and it cannot provide the polarity of the myosin head arrangement. Both the helical reconstruction and X-ray diffraction techniques have advantages and disadvantages, but their disadvantages are avoided in the new approach of single particle analysis of electron micrograph data. Even using the same micrographs as for helical reconstruction, the resolution can be extended by this method to about 50 angstroms or better. In addition, it is not necessary to assume that the myosin filaments are helical; a significant advantage in the case of vertebrate myosin filaments where there is a known crossbridge perturbation. Here we describe the principles of all these approaches, but particularly that of single particle analysis. We outline the application of single particle analysis to myosin filaments from vertebrate skeletal and insect flight (IFM) muscle myosin filaments.


Subject(s)
Muscles/ultrastructure , Myosins/ultrastructure , Animals , Muscles/physiology , Myosins/chemistry , Myosins/physiology , Protein Structure, Tertiary , X-Ray Diffraction
16.
Biophys J ; 85(2): 1063-79, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12885653

ABSTRACT

Low-angle x-ray diffraction patterns from relaxed insect flight muscle recorded on the BioCAT beamline at the Argonne APS have been modeled to 6.5 nm resolution (R-factor 9.7%, 65 reflections) using the known myosin head atomic coordinates, a hinge between the motor (catalytic) domain and the light chain-binding (neck) region (lever arm), together with a simulated annealing procedure. The best head conformation angles around the hinge gave a head shape that was close to that typical of relaxed M*ADP*Pi heads, a head shape never before demonstrated in intact muscle. The best packing constrained the eight heads per crown within a compact crown shelf projecting at approximately 90 degrees to the filament axis. The two heads of each myosin molecule assume nonequivalent positions, one head projecting outward while the other curves round the thick filament surface to nose against the proximal neck of the projecting head of the neighboring molecule. The projecting heads immediately suggest a possible cross-bridge cycle. The relaxed projecting head, oriented almost as needed for actin attachment, will attach, then release Pi followed by ADP, as the lever arm with a purely axial change in tilt drives approximately 10 nm of actin filament sliding on the way to the nucleotide-free limit of its working stroke. The overall arrangement appears well designed to support precision cycling for the myogenic oscillatory mode of contraction with its enhanced stretch-activation response used in flight by insects equipped with asynchronous fibrillar flight muscles.


Subject(s)
Flight, Animal/physiology , Models, Biological , Muscle Contraction , Muscle, Skeletal/chemistry , Muscle, Skeletal/physiology , Myosins/chemistry , Myosins/physiology , Actins/chemistry , Actins/physiology , Actins/ultrastructure , Animals , Computer Simulation , Crystallography, X-Ray/methods , Heteroptera/chemistry , Heteroptera/physiology , Heteroptera/ultrastructure , Models, Molecular , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/physiology , Molecular Motor Proteins/ultrastructure , Muscle, Skeletal/ultrastructure , Myosins/ultrastructure , Protein Conformation , Rest , Structure-Activity Relationship
18.
J Struct Biol ; 137(1-2): 154-63, 2002.
Article in English | MEDLINE | ID: mdl-12064942

ABSTRACT

Myosin filaments isolated from goldfish (Carassius auratus) muscle under relaxing conditions and viewed in negative stain by electron microscopy have been subjected to 3D helical reconstruction to provide details of the myosin head arrangement in relaxed muscle. Previous X-ray diffraction studies of fish muscle (plaice) myosin filaments have suggested that the heads project a long way from the filament surface rather than lying down flat and that heads in a single myosin molecule tend to interact with each other rather than with heads from adjacent molecules. Evidence has also been presented that the head tilt is away from the M-band. Here we seek to confirm these conclusions using a totally independent method. By using 3D helical reconstruction of isolated myosin filaments the known perturbation of the head array in vertebrate muscles was inevitably averaged out. The 3D reconstruction was therefore compared with the X-ray model after it too had been helically averaged. The resulting images showed the same characteristic features: heads projecting out from the filament backbone to high radius and the motor domains at higher radius and further away from the M-band than the light-chain-binding neck domains (lever arms) of the heads.


Subject(s)
Muscles/metabolism , Muscles/ultrastructure , Myosins/chemistry , Animals , Computer Simulation , Goldfish , Microscopy, Electron , Models, Biological , Protein Structure, Tertiary , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...