Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Imaging Biol ; 13(2): 232-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20532642

ABSTRACT

PURPOSE: The aim of the study was to determine the feasibility of using a clinical optical breast scanner with molecular imaging strategies based on modulating light transmission. PROCEDURES: Different concentrations of single-walled carbon nanotubes (SWNT; 0.8-20.0 nM) and black hole quencher-3 (BHQ-3; 2.0-32.0 µM) were studied in specifically designed phantoms (200-1,570 mm(3)) with a clinical optical breast scanner using four wavelengths. Each phantom was placed in the scanner tank filled with optical matching medium. Background scans were compared to absorption scans, and reproducibility was assessed. RESULTS: All SWNT phantoms were detected at four wavelengths, with best results at 684 nm. Higher concentrations (≥8.0 µM) were needed for BHQ-3 detection, with the largest contrast at 684 nm. The optical absorption signal was dependent on phantom size and concentration. Reproducibility was excellent (intraclass correlation 0.93-0.98). CONCLUSION: Nanomolar concentrations of SWNT and micromolar concentrations of BHQ-3 in phantoms were reproducibly detected, showing the potential of light absorbers, with appropriate targeting ligands, as molecular imaging agents for clinical optical breast imaging.


Subject(s)
Breast/anatomy & histology , Light , Molecular Imaging/methods , Optical Devices , Phantoms, Imaging , Absorption/radiation effects , Female , Humans , Nanotubes, Carbon/chemistry , Reproducibility of Results
2.
J Biomed Opt ; 14(3): 030501, 2009.
Article in English | MEDLINE | ID: mdl-19566285

ABSTRACT

Tomographic imaging of a glioma tumor with endogenous fluorescence is demonstrated using a noncontact single-photon counting fan-beam acquisition system interfaced with microCT imaging. The fluorescence from protoporphyrin IX (PpIX) was found to be detectable, and allowed imaging of the tumor from within the cranium, even though the tumor presence was not visible in the microCT image. The combination of single-photon counting detection and normalized fluorescence to transmission detection at each channel allowed robust imaging of the signal. This demonstrated use of endogenous fluorescence stimulation from aminolevulinic acid (ALA) and provides the first in vivo demonstration of deep tissue tomographic imaging with protoporphyrin IX.


Subject(s)
Brain Neoplasms/diagnostic imaging , Fluorescence , Glioma/diagnostic imaging , X-Ray Microtomography/methods , Aminolevulinic Acid , Animals , Humans , Photosensitizing Agents , Protoporphyrins , Rats , Transplantation, Heterologous
3.
Rev Sci Instrum ; 80(4): 043701, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19405660

ABSTRACT

A prototype small animal imaging system was created for coupling fluorescence tomography (FT) with x-ray microcomputed tomography (microCT). The FT system has the potential to provide synergistic information content resultant from using microCT images as prior spatial information and then allows overlay of the FT image onto the original microCT image. The FT system was designed to use single photon counting to provide maximal sensitivity measurements in a noncontact geometry. Five parallel detector locations are used, each allowing simultaneous sampling of the fluorescence and transmitted excitation signals through the tissue. The calibration and linearity range performance of the system are outlined in a series of basic performance tests and phantom studies. The ability to image protoporphyrin IX in mouse phantoms was assessed and the system is ready for in vivo use to study biological production of this endogenous marker of tumors. This multimodality imaging system will have a wide range of applications in preclinical cancer research ranging from studies of the tumor microenvironment and treatment efficacy for emerging cancer therapeutics.


Subject(s)
Fluorescence , X-Ray Microtomography/instrumentation , Animals , Calibration , Equipment Design , Humans , Image Processing, Computer-Assisted , Linear Models , Mice , Phantoms, Imaging , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...