Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 23(1): 386-396, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38113368

ABSTRACT

Extracellular vesicle (EV) secretion has been observed in many types of both normal and tumor cells. EVs contain a variety of distinctive cargoes, allowing tumor-derived serum proteins in EVs to act as a minimally invasive method for clinical monitoring. We have undertaken a comprehensive study of the protein content of the EVs from several cancer cell lines using direct data-independent analysis. Several thousand proteins were detected, including many classic EV markers such as CD9, CD81, CD63, TSG101, and Syndecan-1, among others. We detected many distinctive cancer-specific proteins, including several known markers used in cancer detection and monitoring. We further studied the protein content of EVs from patient serum for both normal controls and pancreatic cancer and hepatocellular carcinoma. The EVs for these studies have been isolated by various methods for comparison, including ultracentrifugation and CD9 immunoaffinity column. Typically, 500-1000 proteins were identified, where most of them overlapped with the EV proteins identified from the cell lines studied. We were able to identify many of the cell-line EV protein markers in the serum EVs, in addition to the large numbers of proteins specific to pancreatic and HCC cancers.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Humans , Proteome/genetics , Proteome/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Cell Line, Tumor
2.
J Magn Reson Imaging ; 57(6): 1641-1654, 2023 06.
Article in English | MEDLINE | ID: mdl-36872608

ABSTRACT

As the incidence of hepatocellular carcinoma (HCC) and subsequent treatments with liver-directed therapies rise, the complexity of assessing lesion response has also increased. The Liver Imaging Reporting and Data Systems (LI-RADS) treatment response algorithm (LI-RADS TRA) was created to standardize the assessment of response after locoregional therapy (LRT) on contrast-enhanced CT or MRI. Originally created based on expert opinion, these guidelines are currently undergoing revision based on emerging evidence. While many studies support the use of LR-TRA for evaluation of HCC response after thermal ablation and intra-arterial embolic therapy, data suggest a need for refinements to improve assessment after radiation therapy. In this manuscript, we review expected MR imaging findings after different forms of LRT, clarify how to apply the current LI-RADS TRA by type of LRT, explore emerging literature on LI-RADS TRA, and highlight future updates to the algorithm. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/radiotherapy , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Data Systems , Magnetic Resonance Imaging/methods , Retrospective Studies , Contrast Media , Sensitivity and Specificity
3.
ACS Omega ; 7(42): 37581-37588, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312392

ABSTRACT

Circulating tumor cells (CTCs) and exosomes, both released from the primary tumor into peripheral blood, are a promising source of cancer biomarkers. They are detectable in the blood and carry a large diversity of biological molecules, which can be used for the diagnosis and monitoring of minimally invasive cancers. However, due to their intrinsic differences in counts, size, and molecular contents, studies have focused on only one type of vesicle. Herein, we have developed an integrated system to sequentially isolate CTCs and exosomes from a single patient blood sample for further profiling and analysis. The CTCs are isolated using a commercial filtration method and then the remaining blood is processed using multiple cycles of ultracentrifugation to isolate the exosomes. The method uses two available technologies where the eluent from CTC isolation is usually discarded and interfaces them, so that the eluent can be interfaced to exosome isolation methods. The CTCs are identified based on fluorescence staining of their surface markers, while the exosomes are analyzed using transmission electron microscopy, nanosight tracking analysis, and mass spec proteomic analysis. This analysis showed CTCs detected by their surface markers for metastatic hepatocellular carcinoma (HCC), while essentially none were detected for cirrhosis. The exosome analysis resulted in the identification of ∼500-1000 exosome proteins per sample confirmed by detection of exosome surface markers CD9, CD63, CD81, and TSG101 in addition to proteins related to cancer progression. Proteins enriched in HCC exosomes were shown to be involved in the immune response, metastasis, and proliferation.

SELECTION OF CITATIONS
SEARCH DETAIL
...