Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 285: 120495, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092156

ABSTRACT

This study presents a comprehensive examination of sex-related differences in resting-state electroencephalogram (EEG) data, leveraging two different types of machine learning models to predict an individual's sex. We utilized data from the Two Decades-Brainclinics Research Archive for Insights in Neurophysiology (TDBRAIN) EEG study, affirming that gender prediction can be attained with noteworthy accuracy. The best performing model achieved an accuracy of 85% and an ROC AUC of 89%, surpassing all prior benchmarks set using EEG data and rivaling the top-tier results derived from fMRI studies. A comparative analysis of LightGBM and Deep Convolutional Neural Network (DCNN) models revealed DCNN's superior performance, attributed to its ability to learn complex spatial-temporal patterns in the EEG data and handle large volumes of data effectively. Despite this, interpretability remained a challenge for the DCNN model. The LightGBM interpretability analysis revealed that the most important EEG features for accurate sex prediction were related to left fronto-central and parietal EEG connectivity. We also showed the role of both low (delta and theta) and high (beta and gamma) activity in the accurate sex prediction. These results, however, have to be approached with caution, because it was obtained from a dataset comprised largely of participants with various mental health conditions, which limits the generalizability of the results and necessitates further validation in future studies. . Overall, the study illuminates the potential of interpretable machine learning for sex prediction, alongside highlighting the importance of considering individual differences in prediction sex from brain activity.


Subject(s)
Brain , Neural Networks, Computer , Humans , Brain/physiology , Machine Learning , Magnetic Resonance Imaging , Electroencephalography/methods
2.
Front Aging Neurosci ; 14: 1019869, 2022.
Article in English | MEDLINE | ID: mdl-36561135

ABSTRACT

Introduction: Brain age prediction has been shown to be clinically relevant, with errors in its prediction associated with various psychiatric and neurological conditions. While the prediction from structural and functional magnetic resonance imaging data has been feasible with high accuracy, whether the same results can be achieved with electroencephalography is unclear. Methods: The current study aimed to create a new deep learning solution for brain age prediction using raw resting-state scalp EEG. To this end, we utilized the TD-BRAIN dataset, including 1,274 subjects (both healthy controls and individuals with various psychiatric disorders, with a total of 1,335 recording sessions). To achieve the best age prediction, we used data augmentation techniques to increase the diversity of the training set and developed a deep convolutional neural network model. Results: The model's training was done with 10-fold cross-subject cross-validation, with the EEG recordings of the subjects used for training not considered to test the model. In training, using the relative rather than the absolute loss function led to a better mean absolute error of 5.96 years in cross-validation. We found that the best performance could be achieved when both eyes-open and eyes-closed states are used simultaneously. The frontocentral electrodes played the most important role in age prediction. Discussion: The architecture and training method of the proposed deep convolutional neural networks (DCNN) improve state-of-the-art metrics in the age prediction task using raw resting-state EEG data by 13%. Given that brain age prediction might be a potential biomarker of numerous brain diseases, inexpensive and precise EEG-based estimation of brain age will be in demand for clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...