Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36496728

ABSTRACT

Beeswax is a natural product that is primarily produced by honey bees of the genus Apis. It has many uses in various kinds of industries, including pharmacy and medicine. This study investigated the effect of storage and floral origin on some physicochemical properties of four beeswax samples. The floral origin of the beeswax samples was determined microscopically and the investigated physical properties were the melting point, color, surface characteristics and thermal behavior. The studied chemical constituents were the acid value, ester value, saponification value and the ester/acid ratio. The FT-IR, SEM, EDX, XRD and TGF techniques were applied to meet the objectives of this study. The physical properties of the beeswax were affected by the storage period and floral origin. The melting point of the beeswax samples significantly increased with the increase in the storage time, from 61.5 ± 2.12 °C for the 3 month sample to 74.5 ± 3.54 °C for the 2 year stored sample (p-value = 0.027). The acid values of the 3 month, 6 month, 1 year and 2 years stored samples were 19.57 ± 0.95, 22.95 ± 1.91, 27 ± 1.91 and 34.42 ± 0.95 mgKOH/g, respectively. The increase in the acid value was significant (p-value = 0.002). The ester values of the studied beeswax samples significantly increased with the increase in storage time as follows: 46.57 ± 2.86 mgKOH/g for the 3 month stored sample, 66.14 ± 3.82 mgKOH/g for the 6 month stored sample, 89.77 ± 0.95 mgKOH/g for the one year stored sample and 97.19 ± 1.91 mgKOH/g for the 2 year stored sample (p-value ≤ 0.001). Similarly, the saponification value and the carbon percentages increased with the increase in storage time. Unlike the results of the chemical components, the oxygen percentage decreased with the increase in storage time as follows: 11.24% (3 month), 10.31% (6 month), 7.97% (one year) and 6.74% (two year). The storage and floral origin of beeswax significantly affected its physicochemical properties in a way that qualify it to act as a phase changing material in the thermal storage energy technology.

2.
Nanotechnology ; 24(23): 235301, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23670339

ABSTRACT

We describe a new approach for achieving controlled spatial placement of VLS-grown nanowires that uses an oxygen-reactive seed material and an oxygen-containing mask. Oxygen-reactive seed materials are of great interest for electronic applications, yet they cannot be patterned using the approaches developed for noble metal seed materials such as Au. This new process, nanoscale chemical templating, takes advantage of the reactivity of the blanket seed layer by depositing it over a patterned oxide that reacts with the seed material to prevent nanowire growth in undesired locations. Here we demonstrate this technique using Al as the seed material and SiO2 as the mask, and we propose that this methodology will be applicable to other reactive metals that are of interest for nanowire growth. The method has other advantages over conventional patterning approaches for certain applications including reducing patterning steps, flexibility in lithographic techniques, and high growth yields. We demonstrate its application with standard and microsphere lithography. We show a high growth yield and fidelity, with no NWs between openings and a majority of openings occupied by a single vertical nanowire, and discuss the dependence of yield on parameters.

3.
Nano Lett ; 9(9): 3296-301, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19639967

ABSTRACT

We have examined the formation of silicon nanowires grown by self-assembly from Si substrates with thin aluminum films. Postgrowth and in situ investigations using various Al deposition and annealing conditions suggest that nanowire growth takes place with a supercooled liquid droplet (i.e., the vapor-liquid-solid system), even though the growth temperatures are below the bulk Al/Si eutectic temperature. Wire morphology as a function of processing conditions is also described. It is shown that when Al environmental exposure is prevented before wire growth a wide process window for wire formation can be achieved. Under optimum growth conditions, it is possible to produce excellent crystal quality nanowires with rapid growth rates, high surface densities, low diameter dispersion, and controlled tapering. Photoelectron spectroscopy measurements indicate that the use of Al leads to active doping levels that depend on the growth temperature in as-grown nanowires and increase when annealed. We suggest that these structural and electronic properties will be relevant to photovoltaic and other applications, where the more common use of Au is believed to be detrimental to performance.


Subject(s)
Aluminum/chemistry , Nanowires/chemistry , Silicon/chemistry , Materials Testing , Membranes, Artificial , Molecular Structure , Nanotechnology , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...