Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cogn Neurosci ; 33(5): 799-813, 2021 04 01.
Article in English | MEDLINE | ID: mdl-34449843

ABSTRACT

Theories of visual recognition postulate that our ability to understand our visual environment at a glance is based on the extraction of the gist of the visual scene, a first global and rudimentary visual representation. Gist perception would be based on the rapid analysis of low spatial frequencies in the visual signal and would allow a coarse categorization of the scene. We aimed to study whether the low spatial resolution information available in peripheral vision could modulate the processing of visual information presented in central vision. We combined behavioral measures (Experiments 1 and 2) and fMRI measures (Experiment 2). Participants categorized a scene presented in central vision (artificial vs. natural categories) while ignoring another scene, either semantically congruent or incongruent, presented in peripheral vision. The two scenes could either share the same physical properties (similar amplitude spectrum and spatial configuration) or not. Categorization of the central scene was impaired by a semantically incongruent peripheral scene, in particular when the two scenes were physically similar. This semantic interference effect was associated with increased activation of the inferior frontal gyrus. When the two scenes were semantically congruent, the dissimilarity of their physical properties impaired the categorization of the central scene. This effect was associated with increased activation in occipito-temporal areas. In line with the hypothesis of predictive mechanisms involved in visual recognition, results suggest that semantic and physical properties of the information coming from peripheral vision would be automatically used to generate predictions that guide the processing of signal in central vision.


Subject(s)
Semantics , Visual Perception , Hemodynamics , Humans , Magnetic Resonance Imaging , Pattern Recognition, Visual , Photic Stimulation , Recognition, Psychology
2.
J Vis ; 21(2): 4, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33544121

ABSTRACT

Previous studies have shown that face stimuli influence the programming of eye movements by eliciting involuntary and extremely fast saccades toward them. The present study examined whether holistic processing of faces mediates these effects. We used a saccadic choice task in which participants were presented simultaneously with two images and had to perform a saccade toward the one containing a target stimulus (e.g., a face). Across three experiments, stimuli were altered via upside-down inversion (Experiment 1) or scrambling of thumbnails within the images (Experiments 2 and 3) in order to disrupt holistic processing. We found that disruption of holistic processing only had a limited impact on the latency of saccades toward face targets, which remained extremely short (minimum saccadic reaction times of only ∼120-130 ms), and did not affect the proportion of error saccades toward face distractors that captured attention more than other distractor categories. It, however, resulted in increasing error rate of saccades toward face targets. These results suggest that the processing of isolated face features is sufficient to elicit extremely fast and involuntary saccadic responses toward them. Holistic representations of faces may, however, be used as a search template to accurately detect faces.


Subject(s)
Facial Recognition/physiology , Saccades/physiology , Adult , Attention/physiology , Eye Movements , Female , Humans , Male , Orientation, Spatial/physiology , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...