Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Epilepsia ; 60(7): 1424-1437, 2019 07.
Article in English | MEDLINE | ID: mdl-31158310

ABSTRACT

OBJECTIVE: Glutamate-gated N-methyl-d-aspartate receptors (NMDARs) are instrumental to brain development and functioning. Defects in the GRIN2A gene, encoding the GluN2A subunit of NMDARs, cause slow-wave sleep (SWS)-related disorders of the epilepsy-aphasia spectrum (EAS). The as-yet poorly understood developmental sequence of early EAS-related phenotypes, and the role of GluN2A-containing NMDARs in the development of SWS and associated electroencephalographic (EEG) activity patterns, were investigated in Grin2a knockout (KO) mice. METHODS: Early social communication was investigated by ultrasonic vocalization (USV) recordings; the relationship of electrical activity of the cerebral cortex with SWS was studied using deep local field potential or chronic EEG recordings at various postnatal stages. RESULTS: Grin2a KO pups displayed altered USV and increased occurrence of high-voltage spindles. The pattern of slow-wave activity induced by low-dose isoflurane was altered in Grin2a KO mice in the 3rd postnatal week and at 1 month of age. These alterations included strong suppression of the delta oscillation power and an increase in the occurrence of the spike-wave bursts. The proportion of SWS and the sleep quality were transiently reduced in Grin2a KO mice aged 1 month but recovered by the age of 2 months. Grin2a KO mice also displayed spontaneous spike-wave discharges, which occurred nearly exclusively during SWS, at 1 and 2 months of age. SIGNIFICANCE: The impaired vocal communication, the spike-wave discharges occurring almost exclusively in SWS, and the age-dependent alteration of SWS that were all seen in Grin2a KO mice matched the sleep-related and age-dependent manifestations seen in children with EAS, hence validating the Grin2a KO as a reliable model of EAS disorders. Our data also show that GluN2A-containing NMDARs are involved in slow-wave activity, and that the period of postnatal brain development (postnatal day 30) when several anomalies peaked might be critical for GluN2A-dependent, sleep-related physiological and pathological processes.


Subject(s)
Receptors, N-Methyl-D-Aspartate/physiology , Sleep, Slow-Wave/physiology , Sleep/physiology , Vocalization, Animal , Animals , Animals, Newborn/physiology , Electroencephalography , Female , Male , Mice/growth & development , Mice, Inbred C57BL , Mice, Knockout , Receptors, N-Methyl-D-Aspartate/metabolism , Vocalization, Animal/physiology
2.
Front Pharmacol ; 9: 698, 2018.
Article in English | MEDLINE | ID: mdl-30018551

ABSTRACT

Epipial application is one of the approaches for drug delivery into the cortex. However, passive diffusion of epipially applied drugs through the cortical depth may be slow, and different drug concentrations may be achieved at different rates across the cortical depth. Here, we explored the pharmacodynamics of the inhibitory effects of epipially applied ionotropic glutamate receptor antagonists CNQX and dAPV on sensory-evoked and spontaneous activity across layers of the cortical barrel column in urethane-anesthetized rats. The inhibitory effects of CNQX and dAPV were observed at concentrations that were an order higher than in slices in vitro, and they slowly developed from the cortical surface to depth after epipial application. The level of the inhibitory effects also followed the surface-to-depth gradient, with full inhibition of sensory evoked potentials (SEPs) in the supragranular layers and L4 and only partial inhibition in L5 and L6. During epipial CNQX and dAPV application, spontaneous activity and the late component of multiple unit activity (MUA) during sensory-evoked responses were suppressed faster than the short-latency MUA component. Despite complete suppression of SEPs in L4, sensory-evoked short-latency multiunit responses in L4 persisted, and they were suppressed by further addition of lidocaine suggesting that spikes in thalamocortical axons contribute ∼20% to early multiunit responses. Epipial CNQX and dAPV also completely suppressed sensory-evoked very fast (∼500 Hz) oscillations and spontaneous slow wave activity in L2/3 and L4. However, delta oscillations persisted in L5/6. Thus, CNQX and dAPV exert inhibitory actions on cortical activity during epipial application at much higher concentrations than in vitro, and the pharmacodynamics of their inhibitory effects is characterized by the surface-to-depth gradients in the rate of development and the level of inhibition of sensory-evoked and spontaneous cortical activity.

3.
Neuroscience ; 368: 256-267, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28528963

ABSTRACT

The developing barrel cortex reveals a rich repertoire of neuronal activity patterns, which have been also found in other sensory neocortical areas and in other species including the somatosensory cortex of preterm human infants. The earliest stage is characterized by asynchronous, sparse single-cell firing at low frequencies. During the second stage neurons show correlated firing, which is initially mediated by electrical synapses and subsequently transforms into network bursts depending on chemical synapses. Activity patterns during this second stage are synchronous plateau assemblies, delta waves, spindle bursts and early gamma oscillations (EGOs). In newborn rodents spindle bursts and EGOs occur spontaneously or can be elicited by sensory stimulation and synchronize the activity in a barrel-related columnar network with topographic organization at the day of birth. Interfering with this early activity causes a disturbance in the development of the cortical architecture, indicating that spindle bursts and EGOs influence the formation of cortical columns. Early neuronal activity also controls the rate of programed cell death in the developing barrel cortex, suggesting that spindle bursts and EGOs are physiological activity patterns particularly suited to suppress apoptosis. It remains to be studied in more detail how these different neocortical activity patterns control early developmental processes such as formation of synapses, microcircuits, topographic maps and large-scale networks.


Subject(s)
Brain Waves/physiology , Cortical Synchronization/physiology , Neurons/physiology , Somatosensory Cortex/physiology , Animals , Rodentia , Somatosensory Cortex/growth & development
4.
Front Cell Neurosci ; 11: 392, 2017.
Article in English | MEDLINE | ID: mdl-29311827

ABSTRACT

Optical Intrinsic Signal imaging (OISi) is a powerful technique for optical brain studies. OIS mainly reflects the hemodynamic response (HR) and metabolism, but it may also involve changes in tissue light scattering (LS) caused by transient cellular swelling in the active tissue. Here, we explored the developmental features of sensory-evoked OIS in the rat barrel cortex during the first 3 months after birth. Multispectral OISi revealed that two temporally distinct components contribute to the neonatal OIS: an early phase of LS followed by a late phase of HR. The contribution of LS to the early response was also evidenced by an increase in light transmission through the active barrel. The early OIS phase correlated in time and amplitude with the sensory-evoked electrophysiological response. Application of the Modified Beer-Lambert Law (MBLL) to the OIS data revealed that HR during the early phase involved only a slight decrease in blood oxygenation without any change in blood volume. In contrast, HR during the late phase manifested an adult-like increase in blood volume and oxygenation. During development, the peak time of the delayed HR progressively shortened with age, nearly reaching the stimulus onset and overlapping with the early LS phase by the fourth postnatal week. Thus, LS contributes to the sensory-evoked OIS in the barrel cortex of rats at all ages, and it dominates the early OIS phase in neonatal rats due to delayed HR. Our results are also consistent with the delayed blood oxygen level dependent (BOLD) signal in human preterm infants.

5.
J Neurosci ; 36(22): 5961-73, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27251618

ABSTRACT

UNLABELLED: To investigate excitatory and inhibitory GABA actions in cortical neuronal networks, we present a novel optogenetic approach using a mouse knock-in line with conditional expression of channelrhodopsin-2 (ChR2) in GABAergic interneurons. During whole-cell recordings from hippocampal and neocortical slices from postnatal day (P) 2-P15 mice, photostimulation caused depolarization and excitation of interneurons and evoked barrages of postsynaptic GABAergic currents. Excitatory/inhibitory GABA actions on pyramidal cells were assessed by monitoring the alteration in the frequency of EPSCs during photostimulation of interneurons. We found that in slices from P2-P8 mice, photostimulation evoked an increase in EPSC frequency, whereas in P9-P15 mice the response switched to a reduction in EPSC frequency, indicating a developmental excitatory-to-inhibitory switch in GABA actions on glutamatergic neurons. Using a similar approach in urethane-anesthetized animals in vivo, we found that photostimulation of interneurons reduces EPSC frequency at ages P3-P9. Thus, expression of ChR2 in GABAergic interneurons of mice enables selective photostimulation of interneurons during the early postnatal period, and these mice display a developmental excitatory-to-inhibitory switch in GABA action in cortical slices in vitro, but so far show mainly inhibitory GABA actions on spontaneous EPSCs in the immature hippocampus and neocortex in vivo SIGNIFICANCE STATEMENT: We report a novel optogenetic approach for investigating excitatory and inhibitory GABA actions in mice with conditional expression of channelrhodopsin-2 in GABAergic interneurons. This approach shows a developmental excitatory-to-inhibitory switch in the actions of GABA on glutamatergic neurons in neocortical and hippocampal slices from neonatal mouse pups in vitro, but also reveals inhibitory GABA actions in the neonatal mouse neocortex and hippocampus in vivo.


Subject(s)
GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Optogenetics , Synaptic Potentials/physiology , gamma-Aminobutyric Acid/pharmacology , Age Factors , Animals , Animals, Newborn , Channelrhodopsins , Excitatory Amino Acid Agents/pharmacology , GABA Agents/pharmacology , Gene Expression Regulation, Developmental/genetics , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Glutamic Acid/pharmacology , Hippocampus/cytology , Hippocampus/growth & development , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/genetics , Mice , Mice, Transgenic , Neocortex/cytology , Neocortex/growth & development , Neural Inhibition/drug effects , Neural Inhibition/physiology , Patch-Clamp Techniques , Synaptic Potentials/drug effects
6.
PLoS One ; 8(11): e79028, 2013.
Article in English | MEDLINE | ID: mdl-24244408

ABSTRACT

In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG) pattern, "delta-brushes," in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW) during routine EEG recording. Stimuli consisted of either low-volume technogenic "clicks" near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus ("click" and voice) was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and "click" stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for "click" and voice stimuli: responses to "clicks" became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory), these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex during fetal stages and provide a potential test of functional cortical maturation during fetal development.


Subject(s)
Acoustic Stimulation , Delta Rhythm , Infant, Premature , Sleep , Sound , Female , Follow-Up Studies , Humans , Infant, Newborn , Male
7.
Front Cell Neurosci ; 7: 83, 2013.
Article in English | MEDLINE | ID: mdl-23754981

ABSTRACT

We present a novel non-invasive technique to measure the polarity of GABAergic responses based on cell-attached recordings of currents activated by laser-uncaging of GABA. For these recordings, a patch pipette was filled with a solution containing RuBi-GABA, and GABA was released from this complex by a laser beam conducted to the tip of the patch pipette via an optic fiber. In cell-attached recordings from neocortical and hippocampal neurons in postnatal days P2-5 rat brain slices in vitro, we found that laser-uncaging of GABA activates integral cell-attached currents mediated by tens of GABA(A) channels. The initial response was inwardly directed, indicating a depolarizing response to GABA. The direction of the initial response was dependent on the pipette potential and analysis of its slope-voltage relationships revealed a depolarizing driving force of +11 mV for the currents through GABA channels. Initial depolarizing responses to GABA uncaging were inverted to hyperpolarizing in the presence of the NKCC1 blocker bumetanide. Current-voltage relationships of the currents evoked by RuBi-GABA uncaging using voltage-ramps at the peak of responses not only revealed a bumetanide-sensitive depolarizing reversal potential of the GABA(A) receptor mediated responses, but also showed a strong voltage-dependent hysteresis. Upon desensitization of the uncaged-GABA response, current-voltage relationships of the currents through single GABA(A) channels revealed depolarizing responses with the driving force values similar to those obtained for the initial response. Thus, cell-attached recordings of the responses evoked by local intrapipette GABA uncaging are suitable to assess the polarity of the GABA(A)-Rs mediated signals in small cell compartments.

8.
J Neurosci ; 32(12): 4017-31, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22442068

ABSTRACT

Severe head trauma causes widespread neuronal shear injuries and acute seizures. Shearing of neural processes might contribute to seizures by disrupting the transmembrane ion gradients that subserve normal synaptic signaling. To test this possibility, we investigated changes in intracellular chloride concentration ([Cl(-)](i)) associated with the widespread neural shear injury induced during preparation of acute brain slices. In hippocampal slices and intact hippocampal preparations from immature CLM-1 mice, increases in [Cl(-)](i) correlated with disruption of neural processes and biomarkers of cell injury. Traumatized neurons with higher [Cl(-)](i) demonstrated excitatory GABA signaling, remained synaptically active, and facilitated network activity as assayed by the frequency of extracellular action potentials and spontaneous network-driven oscillations. These data support a more inhibitory role for GABA in the unperturbed immature brain, demonstrate the utility of the acute brain slice preparation for the study of the consequences of trauma, and provide potential mechanisms for both GABA-mediated excitatory network events in the slice preparation and early post-traumatic seizures.


Subject(s)
Brain Injuries/pathology , Hippocampus , Nerve Net/drug effects , Neurons/drug effects , Signal Transduction/physiology , gamma-Aminobutyric Acid/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Age Factors , Animals , Animals, Newborn , Antigens, Surface/genetics , Bumetanide/pharmacology , Caspases/metabolism , Cell Count , Choline/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA Antagonists/pharmacology , Hippocampus/growth & development , Hippocampus/metabolism , Hippocampus/pathology , Humans , Imaging, Three-Dimensional , In Vitro Techniques , Luminescent Proteins , Male , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Microscopy, Confocal , Nerve Net/pathology , Neurons/metabolism , Phosphinic Acids/pharmacology , Propanolamines/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/metabolism , Regression Analysis , Signal Transduction/drug effects , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Statistics, Nonparametric , Thiazoles/pharmacology , Thioglycolates/pharmacology , Time Factors , Valine/analogs & derivatives , Valine/pharmacology
9.
Neuroimage ; 62(4): 2212-21, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22387472

ABSTRACT

The immature brain spontaneously expresses unique patterns of electrical activity that are believed to contribute to the development of neuronal networks. Certain electrographic features of this activity, particularly modulation on an infraslow time scale, resemble activity patterns observed in the mature brain at 'rest', loosely defined as the absence of an investigator imposed task. However, it is not clear whether the immature activity patterns observed at rest are precursors of the spontaneous neuronal activity that forms resting state networks in the adult. Here, we review recent studies that have explored the generative mechanisms of resting state activity during development in the primary sensory systems of premature human neonates and neonatal rodents. The remarkable hypothesis suggested by this work is that while resting state activity during the pre- and possibly near-term period can bear superficial resemblance to adult activity it is fundamentally different in terms of function and origin. During early development spontaneous thalamocortical activity in primary sensory regions is determined largely by transitory generators in the sensory periphery. This is in contrast to the adult, where spontaneous activity generated within thalamocortex, particularly by cortico-cortical connections, dominates. We therefore suggest a conservative interpretation of developmental mapping studies which are based on indirect measurement of activity (e.g. fMRI), or on the partitioning of EEG frequency using bands derived from adult studies. The generative mechanisms for brain activity at early ages are likely different from those of adults, and may play very different roles; for example in circuit formation as opposed to attention.


Subject(s)
Brain/growth & development , Brain/physiology , Animals , Brain Mapping , Humans , Magnetic Resonance Imaging , Rest/physiology
10.
Front Cell Neurosci ; 5: 3, 2011.
Article in English | MEDLINE | ID: mdl-21519396

ABSTRACT

The mechanisms controlling pain in newborns during delivery are poorly understood. We explored the hypothesis that oxytocin, an essential hormone for labor and a powerful neuromodulator, exerts analgesic actions on newborns during delivery. Using a thermal tail-flick assay, we report that pain sensitivity is two-fold lower in rat pups immediately after birth than 2 days later. Oxytocin receptor antagonists strongly enhanced pain sensitivity in newborn, but not in 2-day-old rats, whereas oxytocin reduced pain at both ages suggesting an endogenous analgesia by oxytocin during delivery. Similar analgesic effects of oxytocin, measured as attenuation of pain-vocalization induced by electrical whisker pad stimulation, were also observed in decerebrated newborns. Oxytocin reduced GABA-evoked calcium responses and depolarizing GABA driving force in isolated neonatal trigeminal neurons suggesting that oxytocin effects are mediated by alterations of intracellular chloride. Unlike GABA signaling, oxytocin did not affect responses mediated by P2X3 and TRPV1 receptors. In keeping with a GABAergic mechanism, reduction of intracellular chloride by the diuretic NKCC1 chloride co-transporter antagonist bumetanide mimicked the analgesic actions of oxytocin and its effects on GABA responses in nociceptive neurons. Therefore, endogenous oxytocin exerts an analgesic action in newborn pups that involves a reduction of the depolarizing action of GABA on nociceptive neurons. Therefore, the same hormone that triggers delivery also acts as a natural pain killer revealing a novel facet of the protective actions of oxytocin in the fetus at birth.

11.
Epilepsy Res ; 95(1-2): 100-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21470827

ABSTRACT

Physiological ketosis is a hallmark of metabolism in suckling infants. However, little is known on the impact of physiological ketosis on brain excitability. We addressed this question in suckling rats in vivo. 16-channel extracellular field potential recordings were performed from somatosensory barrel cortex at postnatal days 5-9 non-anaesthetized rat pups. Seizures were induced by the volatile convulsant agent flurothyl. One hour after blockade of physiological ketogenesis using combined administration of beta-oxidation inhibitors mercaptoacetate, insulin and glucose to prevent hypoglycemia, we found no significant change in the flurothyl-induced electrographic seizures. However, build-up of seizures during two repetitive flurothyl applications was strongly aggravated in the animals with blocked ketogenesis. The effect of ketogenesis inhibitors was reversed by exogenous beta-hydroxybutyrate. Diazepam exerted anticonvulsive action both under physiological ketosis and after blockade of ketogenesis, and bumetanide had no significant anticonvulsive effects in both conditions. Thus, physiological ketosis reduces excitability in the immature brain and elimination of physiological ketosis results in elimination of this anticonvulsant effect. Our study raises concern that the changes in diet, and pharmacological manipulations such as glucose infusion, and pathologies such as hyperinsulinism which break natural ketosis, may be a potential risk factor for epileptogenesis in nursing infants.


Subject(s)
3-Hydroxybutyric Acid/physiology , Ketosis/metabolism , Seizures/prevention & control , Somatosensory Cortex/physiopathology , Animals , Animals, Suckling , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Brain/growth & development , Brain/metabolism , Bumetanide/pharmacology , Bumetanide/therapeutic use , Convulsants/toxicity , Diazepam/pharmacology , Diazepam/therapeutic use , Diet, Ketogenic , Dietary Fats/pharmacology , Disease Susceptibility , Electroencephalography , Flurothyl/toxicity , Glucose/therapeutic use , Hypoglycemia/prevention & control , Insulin/pharmacology , Ketone Bodies/blood , Ketosis/prevention & control , Milk/chemistry , Rats , Seizures/chemically induced , Seizures/metabolism , Somatosensory Cortex/drug effects , Thioglycolates/pharmacology
12.
J Neurosci ; 31(1): 34-45, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21209187

ABSTRACT

GABA depolarizes immature neurons because of a high [Cl(-)](i) and orchestrates giant depolarizing potential (GDP) generation. Zilberter and coworkers (Rheims et al., 2009; Holmgren et al., 2010) showed recently that the ketone body metabolite DL-3-hydroxybutyrate (DL-BHB) (4 mM), lactate (4 mM), or pyruvate (5 mM) shifted GABA actions to hyperpolarizing, suggesting that the depolarizing effects of GABA are attributable to inadequate energy supply when glucose is the sole energy source. We now report that, in rat pups (postnatal days 4-7), plasma D-BHB, lactate, and pyruvate levels are 0.9, 1.5, and 0.12 mM, respectively. Then, we show that DL-BHB (4 mM) and pyruvate (200 µM) do not affect (i) the driving force for GABA(A) receptor-mediated currents (DF(GABA)) in cell-attached single-channel recordings, (2) the resting membrane potential and reversal potential of synaptic GABA(A) receptor-mediated responses in perforated patch recordings, (3) the action potentials triggered by focal GABA applications, or (4) the GDPs determined with electrophysiological recordings and dynamic two-photon calcium imaging. Only very high nonphysiological concentrations of pyruvate (5 mM) reduced DF(GABA) and blocked GDPs. Therefore, DL-BHB does not alter GABA signals even at the high concentrations used by Zilberter and colleagues, whereas pyruvate requires exceedingly high nonphysiological concentrations to exert an effect. There is no need to alter conventional glucose enriched artificial CSF to investigate GABA signals in the developing brain.


Subject(s)
Action Potentials/drug effects , Ketone Bodies/metabolism , Neurons/drug effects , Neurons/physiology , Pyruvic Acid/metabolism , gamma-Aminobutyric Acid/pharmacology , 3-Hydroxybutyric Acid/blood , 3-Hydroxybutyric Acid/pharmacology , Action Potentials/physiology , Animals , Animals, Newborn/blood , Bicuculline/pharmacology , Brain/cytology , Brain/growth & development , Bumetanide/pharmacology , Calcium/metabolism , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA-A Receptor Antagonists/pharmacology , In Vitro Techniques , Lactic Acid/blood , Male , Patch-Clamp Techniques/methods , Pyruvic Acid/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , Sodium Potassium Chloride Symporter Inhibitors/pharmacology
13.
Neuron ; 67(3): 480-98, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20696384

ABSTRACT

Developing cortex generates endogenous activity that modulates the formation of functional units, but how this activity is altered to support mature function is poorly understood. Using recordings from the visual cortex of preterm human infants and neonatal rats, we report a "bursting" period of visual responsiveness during which the weak retinal output is amplified by endogenous network oscillations, enabling a primitive form of vision. This period ends shortly before delivery in humans and eye opening in rodents with an abrupt switch to the mature visual response. The switch is causally linked to the emergence of an activated state of continuous cortical activity dependent on the ascending neuromodulatory systems involved in arousal. This switch is sensory system specific but experience independent and also involves maturation of retinal processing. Thus, the early development of visual processing is governed by a conserved, intrinsic program that switches thalamocortical response properties in anticipation of patterned vision.


Subject(s)
Child Development/physiology , Evoked Potentials, Visual/physiology , Neocortex/growth & development , Vision, Ocular/physiology , Visual Cortex/growth & development , Age Factors , Animals , Animals, Newborn , Humans , Infant, Newborn , Infant, Premature/physiology , Nerve Net/growth & development , Nerve Net/physiology , Neuronal Plasticity/physiology , Photic Stimulation/methods , Rats , Rats, Wistar , Visual Cortex/physiology
14.
Article in English | MEDLINE | ID: mdl-20725525

ABSTRACT

In the developing hippocampus, GABA exerts depolarizing and excitatory actions and contributes to the generation of neuronal network driven giant depolarizing potentials (GDPs). Here, we studied spike time coding at immature GABAergic synapses and its impact on synchronization of the neuronal network during GDPs in the neonatal (postnatal days P2-6) rat hippocampal slices. Using extracellular recordings, we found that the delays of action potentials (APs) evoked by synaptic activation of GABA(A) receptors are long (mean, 65 ms) and variable (within a time window of 10-200 ms). During patch-clamp recordings, depolarizing GABAergic responses were mainly subthreshold and their amplification by persistent sodium conductance was required to trigger APs. AP delays at GABAergic synapses shortened and their variability reduced with an increase in intracellular chloride concentration during whole-cell recordings. Negative shift of the GABA reversal potential (E(GABA)) with low concentrations of bumetanide, or potentiation of GABA(A) receptors with diazepam reduced GDPs amplitude, desynchronized neuronal firing during GDPs and slowed down GDPs propagation. Partial blockade of GABA(A) receptors with bicuculline increased neuronal synchronization and accelerated GDPs propagation. We propose that spike timing at depolarizing GABA synapses is determined by intracellular chloride concentration. At physiological levels of intracellular chloride GABAergic depolarization does not reach the action potential threshold and amplification of GABAergic responses by non-inactivating sodium conductance is required for postsynaptic AP initiation. Slow and variable excitation at GABAergic synapse determines the level of neuronal synchrony and the rate of GDPs propagation in the developing hippocampus.

15.
Eur J Neurosci ; 31(8): 1446-55, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20384780

ABSTRACT

Neonatal seizures are associated with a high likelihood of adverse neurological outcomes, including mental retardation, behavioral disorders, and epilepsy. Early seizures typically involve the neocortex, and post-neonatal epilepsy is often of neocortical origin. However, our understanding of the consequences of neonatal seizures for neocortical function is limited. In the present study, we show that neonatal seizures induced by flurothyl result in markedly enhanced susceptibility of the neocortex to seizure-like activity. This change occurs in young rats studied weeks after the last induced seizure and in adult rats studied months after the initial seizures. Neonatal seizures resulted in reductions in the amplitude of spontaneous inhibitory postsynaptic currents and the frequency of miniature inhibitory postsynaptic currents, and significant increases in the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and in the frequency of miniature excitatory postsynaptic currents (mEPSCs) in pyramidal cells of layer 2/3 of the somatosensory cortex. The selective N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate eliminated the differences in amplitude and frequency of sEPSCs and mEPSCs in the control and flurothyl groups, suggesting that NMDA receptors contribute significantly to the enhanced excitability seen in slices from rats that experienced recurrent neonatal seizures. Taken together, our results suggest that recurrent seizures in infancy result in a persistent enhancement of neocortical excitability.


Subject(s)
Neocortex/physiopathology , Seizures/complications , Seizures/physiopathology , 2-Amino-5-phosphonovalerate/pharmacology , Aging , Animals , Animals, Newborn , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Neocortex/drug effects , Neural Pathways/drug effects , Neural Pathways/physiopathology , Pyramidal Cells/drug effects , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Recurrence , Seizures/chemically induced , Somatosensory Cortex/drug effects , Somatosensory Cortex/physiopathology , Time Factors
16.
J Neurosci ; 30(12): 4325-37, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-20335468

ABSTRACT

A primary feature of the preterm infant electroencephalogram is the presence of large infra-slow potentials containing rapid oscillations called slow activity transients (SATs). Such activity has not been described in animal models, and their generative mechanisms are unknown. Here we use direct-current and multisite extracellular, as well as whole-cell, recording in vivo to demonstrate the existence of regularly repeating SATs in the visual cortex of infant rats before eye opening. Present only in absence of anesthesia, SATs at postnatal day 10-11 were identifiable as a separate group of long-duration (approximately 10 s) events that consisted of large (>1 mV) negative local-field potentials produced by the summation of multiple bursts of rapid oscillatory activity (15-30 Hz). SATs synchronized the vast majority of neuronal activity (87%) in the visual cortex before eye opening. Enucleation eliminated SATs, and their duration, interevent interval, and sub-burst structure matched those of phase III retinal waves recorded in vitro. Retinal waves, however, lacked rapid oscillations, suggesting that they arise centrally. Multielectrode recordings showed that SATs spread horizontally in cortex and synchronize activity at coactive locales via the rapid oscillations. SATs were clearly different from ongoing cortical activity, which was observable as a separate class of short bursts from postnatal day 9. Together, our data suggest that, in vivo, early cortical activity is primarily determined by peripheral inputs-retinal waves in visual cortex-that provide excitatory input, and by thalamocortical circuitry, which transforms this input to beta oscillations. We propose that the synchronous oscillations of SATs participate in the formation of visual circuitry.


Subject(s)
Action Potentials/physiology , Biological Clocks/physiology , Neural Inhibition/physiology , Retina/physiology , Visual Cortex/physiology , Action Potentials/drug effects , Age Factors , Anesthetics/pharmacology , Animals , Animals, Newborn , Cortical Spreading Depression/physiology , Dose-Response Relationship, Drug , Electroencephalography , Functional Laterality/physiology , Isoflurane/pharmacology , Patch-Clamp Techniques/methods , Rats , Rats, Long-Evans , Retina/drug effects , Sensory Deprivation/physiology , Spectrum Analysis , Statistics, Nonparametric , Urethane/pharmacology , Visual Cortex/cytology , Visual Cortex/drug effects , Visual Cortex/growth & development , Visual Pathways/drug effects , Visual Pathways/physiology
17.
Epilepsy Res ; 87(2-3): 286-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19828295

ABSTRACT

Here we studied the long-term effects of neonatal seizures on inhibitory synaptic transmission in somatosensory cortex. We found that recurrent flurothyl-induced seizures result in a marked reduction in amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) and increases of miniature IPSCs interevent intervals. These results indicate that decreasing the inhibitory synaptic strength following neonatal seizures in neocortical neurons is not due to a postsynaptic mechanism.


Subject(s)
Inhibitory Postsynaptic Potentials/physiology , Miniature Postsynaptic Potentials/physiology , Neurons/physiology , Seizures/physiopathology , Somatosensory Cortex/physiopathology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Flurothyl/toxicity , Neural Inhibition/physiology , Neurons/metabolism , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/metabolism , Somatosensory Cortex/metabolism , Synaptic Transmission/physiology , Time
18.
Prog Brain Res ; 170: 243-57, 2008.
Article in English | MEDLINE | ID: mdl-18655887

ABSTRACT

Oxytocin (OXT) exerts multiple effects in the adult central nervous system. However, little is known about the effects of OXT on foetal neurons during delivery, at the time when a surge of OXT occurs. In a recent study, the effects of OXT on gamma-aminobutyric acid (GABA) signalling have been reported in foetal and newborn rats. In the immature rat hippocampal and neocortical neurons at birth, endogenous OXT induced a switch in the action of GABA from excitatory to inhibitory. This excitatory-to-inhibitory switch was caused by a switch in the polarity of the GABAergic responses from depolarizing to hyperpolarizing, reflecting a decrease in the intracellular chloride concentration. The effects of OXT were mimicked and occluded by bumetanide, a selective blocker of the chloride co-transporter NKCC1, suggesting that the effects of OXT involve inhibition of NKCC1. Neuronal death caused by anoxic-aglycaemic episodes was substantially delayed in the foetal hippocampus by endogenous OXT. These findings suggest that OXT plays important role in the preparation of the foetal brain to delivery.


Subject(s)
Brain/embryology , Oxytocin/pharmacology , gamma-Aminobutyric Acid/physiology , Action Potentials/physiology , Animals , Delivery, Obstetric , Female , Fetus/physiology , Humans , Labor, Obstetric/physiology , Lactation/physiology , Neuroglia/physiology , Neurons/physiology , Pregnancy , Sodium-Potassium-Chloride Symporters/physiology , Solute Carrier Family 12, Member 2
19.
Eur J Neurosci ; 27(10): 2515-28, 2008 May.
Article in English | MEDLINE | ID: mdl-18547241

ABSTRACT

During postnatal development of the rat hippocampus, gamma-aminobutyric acid (GABA) switches its action on CA3 pyramidal cells from excitatory to inhibitory. To characterize the underlying changes in the GABA reversal potential, we used somatic cell-attached recordings of GABA(A) and N-methyl-D-aspartate channels to monitor the GABA driving force and resting membrane potential, respectively. We found that the GABA driving force is strongly depolarizing during the first postnatal week. The strength of this depolarization rapidly declines with age, although GABA remains slightly depolarizing, by a few millivolts, even in adult neurons. Reduction in the depolarizing GABA driving force was due to a progressive negative shift of the reversal potential of GABA currents. Similar postnatal changes in GABA signalling were also observed using the superfused hippocampus preparation in vivo, and in the hippocampal interneurons in vitro. We also found that in adult pyramidal cells, somatic GABA reversal potential is maintained at a slightly depolarizing level by bicarbonate conductance, chloride-extrusion and chloride-loading systems. Thus, the postnatal excitatory-to-inhibitory switch in somatic GABA signalling is associated with a negative shift of the GABA reversal potential but without a hyperpolarizing switch in the polarity of GABA responses. These results also suggest that in adult CA3 pyramidal cells, somatic GABAergic inhibition takes place essentially through shunting rather than hyperpolarization. Apparent hyperpolarizing GABA responses previously reported in the soma of CA3 pyramidal cells are probably due to cell depolarization during intracellular or whole-cell recordings.


Subject(s)
Cell Differentiation/physiology , Hippocampus/growth & development , Hippocampus/metabolism , Neural Inhibition/physiology , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Aging/metabolism , Animals , Animals, Newborn , Cell Membrane/drug effects , Cell Membrane/physiology , Chloride Channels/drug effects , Chloride Channels/metabolism , Hippocampus/cytology , Interneurons/cytology , Interneurons/drug effects , Interneurons/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Inhibition/drug effects , Neurons/cytology , Neurons/drug effects , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Rats , Receptors, GABA-A/drug effects , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
20.
J Neurophysiol ; 100(2): 609-19, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18497364

ABSTRACT

GABA depolarizes immature cortical neurons. However, whether GABA excites immature neocortical neurons and drives network oscillations as in other brain structures remains controversial. Excitatory actions of GABA depend on three fundamental parameters: the resting membrane potential (Em), reversal potential of GABA (E(GABA)), and threshold of action potential generation (Vthr). We have shown recently that conventional invasive recording techniques provide an erroneous estimation of these parameters in immature neurons. In this study, we used noninvasive single N-methyl-d-aspartate and GABA channel recordings in rodent brain slices to measure both Em and E(GABA) in the same neuron. We show that GABA strongly depolarizes pyramidal neurons and interneurons in both deep and superficial layers of the immature neocortex (P2-P10). However, GABA generates action potentials in layer 5/6 (L5/6) but not L2/3 pyramidal cells, since L5/6 pyramidal cells have more depolarized resting potentials and more hyperpolarized Vthr. The excitatory GABA transiently drives oscillations generated by L5/6 pyramidal cells and interneurons during development (P5-P12). The NKCC1 co-transporter antagonist bumetanide strongly reduces [Cl(-)]i, GABA-induced depolarization, and network oscillations, confirming the importance of GABA signaling. Thus a strong GABA excitatory drive coupled with high intrinsic excitability of L5/6 pyramidal neurons and interneurons provide a powerful mechanism of synapse-driven oscillatory activity in the rodent neocortex in vitro. In the companion paper, we show that the excitatory GABA drives layer-specific seizures in the immature neocortex.


Subject(s)
Interneurons/drug effects , Membrane Potentials/drug effects , Neocortex/cytology , Neocortex/growth & development , Pyramidal Cells/drug effects , gamma-Aminobutyric Acid/pharmacology , Age Factors , Animals , Animals, Newborn , Bumetanide/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA Agents/pharmacology , In Vitro Techniques , Interneurons/classification , Lysine/analogs & derivatives , Lysine/metabolism , Male , Membrane Potentials/physiology , Mice , Models, Neurological , Patch-Clamp Techniques , Quinoxalines/pharmacology , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Valine/analogs & derivatives , Valine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...